
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Context Services 8.1.x

Developer's Guide

3/11/2022

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents
Developer's Guide 3
Business Attributes 4
Anonymous Service 6
Server Mode 7
Basic Access Authentication 8
Role-Based Access Control 11
Extensions 18
Profiles and Identification 25
Grouping Customer Profiles 30
Services, States, and Tasks 34

Developer's Guide
Purpose: These developer pages, primarily
intended for programmers developing strategies
for contact center agents, assume that you have a
basic understanding of:

• Computer-telephony integration (CTI): concepts,
processes, terminology, and applications.

• Network design and operation.
• Your own network configurations.

Introduction

This developer's guide covers the writing and the optimization of your applications on top of the
Context Services. Representations, requests, and responses are detailed in the API Reference page.
Use this developer guide to learn about the operations and representations used in this REST API.
Developer pages are intended to help you to:

• Understand the design of the Context Services
• Get details to optimize your application's architecture
• Give general directions to your implementation on top of this product.

If pages are missing information or not helpful enough, use the comment form at the bottom of
the page to submit questions and feedbacks.

Developer's Guide

Developer's Guide 3

https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofOperations

Business Attributes
Purpose: Introduces Business Attributes in
Context Services.

Definition

Management Framework creates and manages enumerations known as Business Attributes. These
attributes are modeled in Context Services as integers which represent the Management Framework
DB ID for a given enumerated value. For example, an organization might define the "service type"
Business Attribute, made of two enumerated values:

• "New Account"(DB ID = 1);
• "Bill Payment" (DB ID = 2).

The applications calling Context Services are responsible for the further use of those values and
should only use the appropriate business attribute values.

Business Attributes in Context Services

The following specific fields are validated against specified mapped Business Attributes in the
Configuration Server:

• service_type
• state_type
• task_type
• application_type
• resource_type
• media_type
• disposition

Their use concerns the Service, State, and Task representations. UCS automatically rejects wrong
unknown enumerated values, and returns a proper response which directs you to use the valid
enumerated values of the configured Business Attributes. The system includes a service for returning
information on attributes mapped to the Configuration Server attributes, including information on the
DB ID, unique name, display name, and description for all values of the mapped Business Attributes.

• UCS only validates incoming data against the current Business Attribute definitions. It does not
guarantee referential integrity over time. More specifically, both Genesys Administrator and
Configuration Manager allow the modification of the Business Attributes definitions over time.

Business Attributes

Developer's Guide 4

• When Business Attributes are deleted, this operation does not modify the historical service records
which may reference the DB IDs of the deleted Business Attributes.

For further details about the configuration of these business attributes, refer to the Business
Attributes configuration section.

Read Also

• Profiles and Identification
• Services, States, and Tasks

Business Attributes

Developer's Guide 5

https://docs.genesys.com/Documentation/CS/8.1.x/User/ConfigurationOptions#Section_.5Bbusiness-attributes.5D
https://docs.genesys.com/Documentation/CS/8.1.x/User/ConfigurationOptions#Section_.5Bbusiness-attributes.5D

Anonymous Service
Purpose: Introduces the Anonymous service and
its management.

Definition

An anonymous service is a service which is assigned to an anonymous customer. This customer is
still unknown, so no customer ID is assigned to the service. Your application is in charge of assigning
this customer ID as soon as the customer is identified. Read also Services, States, and Tasks.

Use Case

In many situations, your application can identify the customer prior to the creation of the service,
which ensures the possibility of adding the customer ID to the service in the Start Service operation.
Two examples: the customer explicitly logs in the website before invoking the service, or the IVR
identifies the customer and then chooses a service. In those cases, your application cannot specify
the customer ID at the service creation. However, in other cases, your application may start the
service before the customer is identified. Therefore, if your application cannot specify the customer's
ID at the service creation, the service is anonymous. Let's consider a customer who is filling out an
order on a web site before he or she has explicitly logged in, or a preliminary service delivered in the
IVR before the customer is prompted for identity information. In these cases, the application is not
able to provide the customer identifier.

The Contact Key

Your application can create an anonymous service with the Start Service operation. In that case,
although the customer is not identified, your application must pass a contact key, based on the
current information available. The "contact key" is supplied at the service creation. Then, your
application is able to query the service even if it is anonymous. See Query Anonymous Services
Examples of contact key can be the following: e-mail address, phone number, lastname+firstname.

Related Operations

• Associate Service
• Start Service
• Query Anonymous Services

Anonymous Service

Developer's Guide 6

https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServices#Query_Anonymous_Services
https://docs.genesys.com/Documentation/CS/8.1.x/API/AssociateService
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServices#Query_Anonymous_Services

Server Mode
Purpose: Describes the two UCS server modes,
maintenance and production, available for Context
Services.

In versions 8.1.000.10 and higher, you need to check the privileges set according to roles prior to
using the operations described on this page. See Role-Based Access Control for additional details.

Introduction

Universal Contact Server provides Context Services with two modes: production and maintenance.
The current mode can be changed by using the Set Server Mode operation. If your application
attempts to access a method unavailable in the given mode, it receives the HTTP error code 503
("Not available"). The body of that HTTP response includes the error message which confirms that the
selected method is unavailable while the system is in "production" or "maintenance" mode,
respectively. See W3 RFC2616.

Maintenance Mode

In this mode, UCS authorizes only the Schema Operations, and does not accept requests for
managing customer profiles or service-related data. If no profile schema is defined, UCS returns the
HTTP Status Code 404 (Not Found) and automatically switches to maintenance mode.

Production Mode

In production mode, UCS accepts incoming requests for managing the customer profiles and service-
related data. Your application should not update or modify attribute schemas, so Schema Operations
are unavailable unless they are explicitly stated.

If the production mode is required to use a given Context Services method, then
the related wiki page for that method includes a note in the prerequisites of the
operation.

Server Mode

Developer's Guide 7

https://docs.genesys.com/Documentation/CS/8.1.x/API/SetServerMode
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofSchemaOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofSchemaOperations

Basic Access Authentication
Purpose: Offers guidelines for managing
Authentication with the Context Services.
Available since: 8.0.300.02

About Basic Authentication

Wikipedia Basic Access Authentication states that: In the context of an HTTP transaction, the basic
access authentication is a method designed to allow a web browser, or other client program, to
provide credentials – in the form of a user name and password – when making a request. The Context
Services provide support for basic access authentication once enabled in the authentication section
of your configuration.

• When basic access authentication is enabled, the REST requests must contain a valid username and
password in the HTTP/HTTPS header. As a result, the Context Services send descriptive error messages
if they receive an incorrect username/password combination.

• If basic authentication is disabled, the Context Services ignore any username or password passed in
HTTP/HTTPS header.

If the authentication is enabled and valid information is not provided, the Context Services return the
HTTP response 401 Unauthorized. In that case, the user application should resubmit the request with
the proper authentication header.

Base64 Encoding

The authentication string to transmit is the result of the concatenation of the username and password
separated by a colon (username:password). It must then be encoded with the Base64 algorithm. For
example, if the username is 'kent' and the password 'superman', the string to encode is
kent:superman and results in the string 'a2VudDpzdXBlcm1hbg=='. If you are using a framework, it
may provide the Base64-encoding transparently. If your framework does not include the
Base64-encoding feature then you must encode your string. The following code snippet shows how to
proceed with a Restlet application:

final Request request = new Request();
String url = "http://" + host + ":" + port + "/server/status";
request.setResourceRef(url);
request.setMethod(Method.GET);
final Client myClient = new Client(Protocol.HTTP);
ChallengeResponse authentication = new ChallengeResponse(ChallengeScheme.HTTP_BASIC, "kent",
"superman");
request.setChallengeResponse(credential);
Response response = client.handle(request);

Additional examples of Base64 encoding are available in Wikipedia Basic Access

Basic Access Authentication

Developer's Guide 8

https://docs.genesys.com/Documentation/CS/8.1.x/User/ConfigurationOptions#.5Bauthentication.5D_Section

Authentication.

Request Flow and Returned Errors

The following sequence diagrams show the protocol request and answer flow when basic access
authentication is enabled.

If the request returns the 401 Unauthorized error, your application should retry with a correct HTTP
header. The Context Services returns 401 Unauthorized error due to authentication issues in the
following scenarios:

• The authentication is enabled and the request is not authorized

Basic Access Authentication

Developer's Guide 9

• The request provides the correct header for authentication, but wrong credential information (the
username or the password is wrong).

Basic Access Authentication

Developer's Guide 10

Role-Based Access Control
Purpose: Understand how to deal with the role-
based access implemented in the Context Services.
Available since: 8.1.000.10

Role-Based Access Configuration

Through Configuration Manager or Genesys Administrator, you can define roles for your application
built on top of the Context Services. To do this, you assign one or more roles to your users when
creating your application's configuration in the Context Services. You are responsible for creating and
defining these roles, where each role is a collection of Genesys Administrator Tasks associated with
permissions.

Once authenticated, if the use-role option is set to true in the configuration (see the options
defined in authentication Section) then the Universal Contact Server checks that each operation is
allowed. If not, Error 403 forbidden is returned.

Role-Based Access Control

Developer's Guide 11

https://docs.genesys.com/Documentation/CS/8.1.x/User/ConfigurationOptions

Mapping Genesys Administrator Task with Context Services

Operations can require that one or more Genesys Administrator Tasks are allowed, depending on
what data is modified by the request. If your application's role does not allow all of the rights required
for an operation then that operation will not proceed. For example, consider that your application
performs a Start Service operation with extensions. If your application's role allows

Role-Based Access Control

Developer's Guide 12

https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService

UCS.Service.startService but not UCS.Service.createServiceExtension then the service is
neither created nor started. Your application instead receives a HTTP 403 Forbidden error.

Operation Genesys Administrator Tasks
Profile Operations

Create Customer Profile
POST /profiles

• UCS.Customer.createProfile
• UCS.Customer.createProfileExtension (if

extensions)

Delete Customer Profile
DELETE /profiles/${customer_id} • UCS.Customer.deleteCustomerProfile

Delete Record From Profile Extension
PUT
/profiles/${customer_id}/extensions/${ext_name}/by/
unique

• UCS.Customer.deleteProfileExtension

Identify Customer
GET /profiles

• UCS.Customer.readCustomerProfile
• UCS.Customer.readProfileExtension (if

include_extensions is specified in the query)

Insert Extension Records
POST /profiles/${customer_id}/extensions • UCS.Customer.createProfileExtension

Bulk Profile Import
POST /profiles/import

• UCS.Customer.executeBulkImport
• UCS.Customer.createProfile
• UCS.Customer.createProfileExtension

Query Customer Profile
GET /profiles/${customer_id}

• UCS.Customer.readCustomerProfile
• UCS.Customer.readProfileExtension (if

extensions)

Update Customer Profile
PUT /profiles/${customer_id}

• UCS.Customer.updateCustomerProfile
• UCS.Customer.updateProfileExtension (if

extensions)

Merge Customer Profile
PUT /profiles/${customer_id}/merge/${src_id}/ • UCS.Customer.mergeCustomerProfile

Update Record In Profile Extension
PUT
/profiles/${customer_id}/extensions/${ext_name}/by/
unique

• UCS.Customer.updateProfileExtension

Service Operations

Role-Based Access Control

Developer's Guide 13

https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofProfileOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteRecordFromProfileExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/IdentifyCustomer
https://docs.genesys.com/Documentation/CS/8.1.x/API/InsertExtensionRecords
https://docs.genesys.com/Documentation/CS/8.1.x/API/BulkProfileImport
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/MergeCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateRecordInProfileExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofServiceOperations

Operation Genesys Administrator Tasks

Associate Service
POST
/customers/${customer_id}/services/${service_id}

• UCS.Service.startService
• UCS.Service.updateServiceExtension (if

extension)

Complete Service
POST /services/${service_id}/end

• UCS.Service.stopService
• UCS.Service.updateServiceExtension

Delete Record From Service Extension
PUT
/services/${service_id}/extensions/${ext_name}/delete/
by/unique

• UCS.Service.deleteServiceExtension

• Query Services

GET /services/anonymous/${contact_key}
GET /customers/${customer_id}/services

• Query Service by ID

GET /services/${service_id}

• UCS.Service.readService
• UCS.Service.readServiceExtension (if

extensions)
• UCS.States.readState
• UCS.Tasks.readTask

Start Service
POST /services/start

• UCS.Service.startService
• UCS.Service.createServiceExtension

Update Service Extension
PUT
/services/${service_id}/extensions/${ext_name}

• UCS.Service.updateServiceExtension

Update Record In Service Extension
PUT
/services/${service_id}/extensions/${ext_name}/by/
unique

• UCS.Service.updateServiceExtension

State Operations

Complete State
POST
/services/${service_id}/states/${state_id}/end

• UCS.States.stopState
• UCS.States.updateStateExtension

Delete Record From State Extension
PUT
/services/${service_id}/states/${state_id}/extensions/${ext_name}/delete/
by/unique

• UCS.States.deleteStateExtension

Perform State Transition
POST /services/${service_id}/states/transition

• UCS.States.startState
• UCS.States.stopState
• UCS.States.createStateExtension (if extensions)

Role-Based Access Control

Developer's Guide 14

https://docs.genesys.com/Documentation/CS/8.1.x/API/AssociateService
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteService
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteRecordFromServiceExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServices
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServicebyID
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateServiceExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateRecordInServiceExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofStateOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteState
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteRecordFromStateExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/PerformStateTransition

Operation Genesys Administrator Tasks

• UCS.States.updateStateExtension (if extensions)

• Query States

GET /services/${service_id}/states

• :Query State by ID

GET /services/${service_id}/states/${state_id}

• UCS.States.readState
• UCS.States.readStateExtension (if extensions)
• UCS.Tasks.readTask

Start State
POST /services/${service_id}/states/start

• UCS.States.startState
• UCS.States.createStateExtension

Update State Extension
PUT
/services/${service_id}/states/${state_id}/extensions/${ext_name}

• UCS.States.updateStateExtension

Update Record In State Extension
PUT
/services/${service_id}/state/${state_id}extensions/${ext_name}/by/
unique

• UCS.States.updateStateExtension

Task Operations

Complete Task
POST /services/${service_id}/tasks/${task_id}/end

• UCS.Tasks.stopTask
• UCS.Tasks.updateTaskExtension

Delete Record From Task Extension
PUT
/services/${service_id}/task/${task_id}/extensions/${ext_name}/delete/
by/unique

• UCS.Tasks.deleteTaskExtension

• Query Tasks

GET /services/${service_id}/tasks

• Query Task by ID

GET /services/${service_id}/tasks/${task_id}

• UCS.Tasks.readTask
• UCS.Tasks.readTaskExtension

Start Task
POST /services/${service_id}/tasks/start

• UCS.Tasks.startTask
• UCS.Tasks.createTaskExtension

Update Task Extension
PUT
/services/${service_id}/tasks/${task_id}/extensions/${extension_name}

• UCS.Tasks.updateTaskExtension

Update Record In Task Extension
PUT
/services/${service_id}/task/${task_id}extensions/${ext_name}/by/
unique

• UCS.Tasks.updateTaskExtension

Role-Based Access Control

Developer's Guide 15

https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStates
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStatebyID
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartState
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateStateExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateRecordInStateExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofTaskOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteTask
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteRecordFromTaskExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTasks
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTaskbyID
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartTask
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateTaskExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateRecordInTaskExtension

Operation Genesys Administrator Tasks
Schema Operations

Create Profile Extension Schema
POST /metadata/profiles/extensions • UCS.SchemaMgt.createProfileExtensionSchema

Create Identification Key
POST /metadata/identification-keys • UCS.SchemaMgt.createIdKeys

Create State Extension Schema
POST /metadata/states/extensions • UCS.SchemaMgt.createStateExtensionSchema

Create Task Extension Schema
POST /metadata/tasks/extensions • UCS.SchemaMgt.createTaskExtensionSchema

Create Service Extension Schema
POST /metadata/services/extensions • UCS.SchemaMgt.createServiceExtensionSchema

Get Identification Keys
GET /metadata/identification-keys • UCS.SchemaMgt.readIdKeys

Query Profile Schema
GET /metadata/profiles/ • UCS.SchemaMgt.readProfileExtensionSchema

Query Profile Extension Schema
GET /metadata/profiles/extensions UCS.SchemaMgt.readProfileExtensionSchema

Query State Extension Schema
GET /metadata/states/extensions • UCS.SchemaMgt.readStateExtensionSchema

Query Task Extension Schema
GET /metadata/tasks/extensions • UCS.SchemaMgt.readTaskExtensionSchema

Query Service Extension Schema
GET /metadata/services/extensions • UCS.SchemaMgt.readServiceExtensionSchema

Query Business Attribute Schema
GET /metadata/business-attributes/${business-
attribute-name}

• UCS.SchemaMgt.readBusinessAttributes

Get Metadata Cache
GET /metadata/cache • UCS.SchemaMgt.handleMetadata

Change Metadata Cache
PUT /metadata/cache • UCS.SchemaMgt.handleMetadata

Get Metadata
GET ${contenttype}} /metadata • UCS.SchemaMgt.handleMetadata

Delete Metadata Profile Extensions
DELETE /metadata/profiles/extensions/${extension-
name}

• UCS.SchemaMgt.deleteProfileExtensionSchema

Role-Based Access Control

Developer's Guide 16

https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofSchemaOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateProfileExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateIdentificationKey
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateStateExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateTaskExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateServiceExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/GetIdentificationKeys
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryProfileSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryProfileExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStateExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTaskExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServiceExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryBusinessAttributeSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/GetMetadataCache
https://docs.genesys.com/Documentation/CS/8.1.x/API/ChangeMetadataCache
https://docs.genesys.com/Documentation/CS/8.1.x/API/GetMetadata
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteMetadataProfileExtensions

Operation Genesys Administrator Tasks
Delete Metadata Services Extensions
DELETE /metadata/services/
extensions/${extension-name}

• UCS.SchemaMgt.deleteServiceExtensionSchema

Delete Metadata States Extensions
DELETE /metadata/states/extensions/${extension-
name}

• UCS.SchemaMgt.deleteStateExtensionSchema

:Delete Metadata Tasks Extensions
DELETE /metadata/tasks/extensions/${extension-
name}

• UCS.SchemaMgt.deleteTaskExtensionSchema

Delete Metadata Identification Keys
DELETE /metadata/identification-keys/${id_key-
name}

• UCS.SchemaMgt.deleteIdKeys

Interaction Operations
Query Interactions
GET /customers/${customer_id}/interactions
GET /services/${service_id}/interactions
GET /interactions/${interaction_id}

• UCS.SchemaMgt.readInteraction

Server Operations

Query Server Status
GET /server/status • UCS.SystemMgt.readServerInfo

Set Server Mode
POST /server/mode • UCS.SystemMgt.changeServerMode

Role-Based Access Control

Developer's Guide 17

https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteMetadataServicesExtensions
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteMetadataStatesExtensions
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteMetadataTasksExtensions
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteMetadataIdentificationKeys
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofInteractionOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryInteractions
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofServerOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServerStatus
https://docs.genesys.com/Documentation/CS/8.1.x/API/SetServerMode

Extensions
Purpose: Offers guidelines for managing
Extensions provided by the Context Services.

In versions 8.1.000.10 and higher, you need to check the privileges set according to roles prior to
using the operations described on this page. See Role-Based Access Control for additional details.

About Extensions

Extensions are additional information which extend the standard contents of resources such as
Customer Profile, Service, State, and Task. An Extension is a record-a list of attributes-or an array of
records, associated with a resource ID.

• You can define as many extension types as you need by creating an Extension Schema for each of
them.

• Extension schema are created through Context Services (see List of Schema Operations), not through
the Configuration Layer (Configuration Manager).

Extension records can be either:

• "single-valued": The extension contains a single record across the resource (for instance, LastName,
FirstName, identifiers, etc.)

• "multi-valued": The extension can contain several values (for instance, phone numbers, e-mail
addresses, etc.)

Extensions are provided at the same time and at the same level than the attributes of the resource.
For instance, the following output presents a profile containing the attributes FirstName, LastName,
DOB<ref>DOB: Date Of Birth</ref> and one multi-valued extension EmailAddress:

{
"FirstName": "Bruce",
"LastName": "Banner",
"DOB": "1962-05-10",
"EmailAddress": [

"bruce.banner@marvelous.com",
"b.banner@hulk.dom"

]
}

Unique Attributes
In the case of multi-valued extensions, the attributes which are part of the 'unique' list (specified in
the Extension Schema) are used to identify records. The combination of these attributes' values must
be unique across the related resource, and this enables UCS to identify a given record in the given
extension. For example, consider a 'Bill' extension which includes the attribute bill_id. To ensure that

Extensions

Developer's Guide 18

https://docs.genesys.com/Documentation/CS/8.1.x/API/CustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/Service
https://docs.genesys.com/Documentation/CS/8.1.x/API/State
https://docs.genesys.com/Documentation/CS/8.1.x/API/Task
https://docs.genesys.com/Documentation/CS/8.1.x/API/Extension
https://docs.genesys.com/Documentation/CS/8.1.x/API/ExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofSchemaOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/ExtensionSchema

a given service does not have two 'Bill' extensions with the same bill_id, set the following unique
array in the extension schema:

unique = ["bill_id"]

The attributes of the unique list are mandatory at the extension record's creation. You need to
provide values for the 'unique' attributes:

• At the creation of an extension record.
• In operations which update or delete a specific record, such as Update Record In Profile Extension or

Delete Record From Profile Extension.

Operations which manage extension records are part of the related resource operations.
For instance, the operations which manage records of profile extensions are part of the List
of Profile Operations.

Limitations

• Once created, you cannot update the schema.
• When you are dealing with extensions or extension schema, make sure that you do not use one of the

Unauthorized Strings as an attribute name or value.

Managing Extension Schema
Operations and resources in this section are part of
Before you can start using extensions, you must create their schema.

Once created, you cannot update or remove them.

You can create schema with the following operations:

• Create Profile Extension Schema
• Create State Extension Schema
• Create Task Extension Schema
• Create Service Extension Schema

Then, you can retrieve extension schema.

• Query Profile Schema
• Query Profile Extension Schema
• Query State Extension Schema
• Query Task Extension Schema
• Query Service Extension Schema

Extensions

Developer's Guide 19

https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateRecordInProfileExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteRecordFromProfileExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofProfileOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofProfileOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/UnauthorizedStrings
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateProfileExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateStateExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateTaskExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateServiceExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryProfileSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryProfileExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStateExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTaskExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServiceExtensionSchema

Example: Retrieving the schema for profile extensions:

GET /metadata/profiles/extensions

Result

200 OK
[
{

"name":"Phone",
"type":"multi-valued",
"attributes": [

{"name":"PhoneType","type":"integer","default":0,"mandatory":"true"},
{"name":"prefix","type":"string","length":"3","default":"555",},
{"name":"PhoneNumber","type":"integer","length":15,"mandatory":"true"},
{"name":"description","type":"string","length":32,"mandatory":"true"},
{"name":"start_availabilty","type":"datetime"},
{"name":"end_availabilty","type":"datetime", "mandatory":"false"}
]

},
{

"name":"Address",
"type":"single-valued",
"attributes": [

{"name":"AddressType","type":"integer","default":0},
{"name":"Address","type":"string","length":256},
{"name":"City","type":"string","length":32},
{"name":"County","type":"string","length":32},
{"name":"PostCode","type":"string", "length":10},
{"name":"Country","type":"string","length":32}
]

}]

Managing Extensions

Adding Extensions to a given Resource
You can add extensions when managing the resources with related operations which authorize the
<extension n> attribute in the operation's body (the following list may not be exhaustive): Associate
Service, Start Service, Complete Service, Start State, Complete State, Perform State Transition, Start
Task, Complete Task.

In that case, if a former value of the extension exists for the given resource, this former
extension value is replaced with the new extension value specified in the body.

Let's consider the following multi-valued extension record named 'Satisfaction'. The unique field
which identifies records is "place" (the name of the proposed place for the booking. Example:
Records for a 'Satisfaction' extension

[
{
"rating":2,
"pertinence":8,
"usefull":true,
"place":"Terranova mexico resort"

},

Extensions

Developer's Guide 20

https://docs.genesys.com/Documentation/CS/8.1.x/API/AssociateService
https://docs.genesys.com/Documentation/CS/8.1.x/API/AssociateService
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteService
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartState
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteState
https://docs.genesys.com/Documentation/CS/8.1.x/API/PerformStateTransition
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartTask
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartTask
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteTask

{
"rating":8,
"pertinence":4,
"usefull":false,
"place":"Fancy resort Paris"

}
]

The following operation Complete State indicates a single value for the 'Satisfaction' extension.
Example: Operation which updates the 'Satisfaction' extension for a given state.

POST /services/6739/states/5362/end
{
"interaction_id":"00001a57JGQ00BVS",
"disposition": 10,
"disposition_desc": "SUCCESS",
"application_type":"customer_online_survey",
"application_id":40,
"resource_type":"html",
"resource_id":20,
"media_type":"webform",
"Feedback":
{

"FeedbackType":"survey",
"rating":7,
"notes":"warm welcome at frontdesk, thanks for the nice trip"

},
"Satisfaction": [
{
"rating":2,
"pertinence":6,
"usefull":true,
"place":"Marina Porto Vecchio"

}
]

}

As a result, the previous records 'Fancy resort Paris ' and 'Terranova mexico resort ' are lost. In this
case, to add a new record to the extension, you must specify the whole extension content. For
instance, note the following: Example: Operation which updates the 'Satisfaction' extension
without losing records

POST /services/6739/states/5362/end
{
"interaction_id":"00001a57JGQ00BVS",
"disposition": 10,
"disposition_desc": "SUCCESS",
"application_type":"customer_online_survey",
"application_id":40,
"resource_type":"html",
"resource_id":20,
"media_type":"webform",
"Feedback":
{

"FeedbackType":"survey",
"rating":7,
"notes":"warm welcome at frontdesk, thanks for the nice trip"

},
"Satisfaction": [

{
"rating":2,
"pertinence":6,

Extensions

Developer's Guide 21

https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteState

"usefull":true,
"place":"Marina Porto Vecchio"

},
{

"rating":2,
"pertinence":8,
"usefull":true,
"place":"Terranova mexico resort"

},
{

"rating":8,
"pertinence":4,
"usefull":false,
"place":"Fancy resort Paris"

}]
}

Retrieving Extensions
GET operations which enable to retrieve resources include the "extensions" parameter to specify a
list of extensions to retrieve. By default, extensions are not returned. The following list is not
exhaustive:

• Query Customer Profile
• Query Services
• Query Service by ID
• Query States
• Query State by ID
• Query Tasks
• Query Task by ID

Retrieving service with the extensions ClientInfo,relatedOffers

GET /services/3005?extensions=ClientInfo,relatedOffers

Result:

{
"service_id" : 3005,
"ClientInfo" : {

"userAgent" : "Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.9.2) Gecko/20100115
Firefox/3.6 (.NET CLR 3.5.30729)",

"clientIp" : "192.168.1.1",
"contentType" : "Content-Type : application/json;charset=UTF-8"

},
"service_type" : 100,
"est_duration" : 300,
"started" : {

"timestamp" : "2010-09-07T07:58:16.313Z",
"application_type" : 400,
"resource_id" : 10,
"media_type" : 2,
"resource_type" : 200,
"application_id" : 40,
"interaction_id" : "56"

Extensions

Developer's Guide 22

https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServices
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServicebyID
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStates
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStatebyID
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTasks
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTaskbyID

},
"disposition" : 5,
"completed" : {

"timestamp" : "2010-06-03T08:51:54.380Z",
"interaction_id" : "1587"

}
}],
"relatedOffers" : [{

"offer_name" : "VIP credit card black ed.",
"type" : "9",
"comments" : "proposed to all client"

}, {
"offer_name" : "3 times payment GOLD",
"type" : "4",
"comments" : "limited offer"

}, {
"offer_name" : "life insurance",
"type" : "3",
"comments" : "healt check to be done before approval"

}],
"contact_key" : "bob"

}

Managing Extension Records
The Context Services Restful API includes dedicated operations such as update or delete a record, or
update the whole extension. They are available in the List of Service Operations, State Operations,
and Task Operations pages. When dealing with these operations, you must provide unique attributes
to identify the targeted record. For instance, to manage State Extensions, the State Operations
provide the following operations:

• Update State Extension
• Update Record In State Extension
• Delete Record From State Extension

Example: Updating the Tons of Hill, Paris record of the extension relatedOffers in the
service 8389.

PUT /services/8389/states/1/extensions/Satisfaction/by/unique
{

"rating":2,
"pertinence":8,
"usefull":true,
"place":"Tons of Hill, Paris"

}

Deleting an Extension
To delete the extension of a given resource, use the related Update XXX Extension operation with no
attributes in the operation's body.

• Update Customer Profile and Update Record In Profile Extension
• Update Service Extension
• Update State Extension

Extensions

Developer's Guide 23

https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofServiceOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofStateOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofTaskOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofStateOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateStateExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateRecordInStateExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/DeleteRecordFromStateExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateRecordInProfileExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateServiceExtension
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateStateExtension

• Update Task Extension

Example: Deleting the relatedOffers multi-valued extension of the service 8389

PUT /services/8389/extensions/relatedOffers
[]

In versions 8.1.000.10 and higher, as explained in Role-Based Access Control,
you need update privileges to clear the extension, as follows:

• Clear Profile Extension—UCS.Customer.updateProfileExtension
• Clear Service Extension—UCS.Service.updateServiceExtension
• Clear State Extension—UCS.States.updateStateExtension
• Clear Task Extension—UCS.Tasks.updateTaskExtension

Read More

• Profiles and Identification
• Services, States, and Tasks

Extensions

Developer's Guide 24

https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateTaskExtension

Profiles and Identification
Purpose: Gives guidelines for managing Customer
Profiles with Context Services.

In versions 8.1.000.10 and higher, you need to check the privileges set according to roles prior to
using the operations described on this page. See Role-Based Access Control for additional details.

Learn about the Customer Profile and Associated Resources

The Customer Profile resource associates a customer ID with:

• A list of attributes, built on top of the existing UCS<ref>UCS: Universal Contact Server</ref> Contact
model.

• A list of extensions, defined at runtime through Context Services

As stated in Profile Basics, the attributes correspond to Core information in UCS. Their schema fulfills
defined through the list of Business Contact Attributes that you can define in Configuration Manager
(see Configuration Options for additional details). The extensions are additional information that your
application can create so that you can extend the profile at runtime, as explained in Extending the
Customer Profile. Identification Keys define which attributes should be used to identify a customer in
the database. For instance, the association of [LastName, Firstname], or the e-mail address.

Attribute Values
Attributes and extension records can be either:

• "single-valued"(for instance, LastName, FirstName, identifiers, and so on);
• "multi-valued": values can be multiple (for instance, phone numbers, e-mail addresses, and so on).

The following output presents a sample of Customer profile, where "FirstName", "LastName", and
"DOB" (Date Of Birth) are single-valued contact attributes, and the other fields are multi-valued
extension records created at runtime.

{
"FirstName": "Bruce",
"LastName": "Banner",
"DOB": "1962-05-10",
"EmailAddress": [

"bruce.banner@marvelous.com",
"b.banner@hulk.dom"

],
"Phone": [
{

"PhoneType":0,
"prefix":"+33",

Profiles and Identification

Developer's Guide 25

https://docs.genesys.com/Documentation/CS/8.1.x/API/CustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/User/ProfileBasics
https://docs.genesys.com/Documentation/CS/8.1.x/User/ConfigurationOptions

"PhoneNumber":"3145926535",
"description":"family phone",
"start_availabilty":"2009-12-18T18:30:00.000Z",
"end_availabilty":"2009-12-18T21:40:00.000Z"

},
{

"PhoneType":2,
"prefix":"+33",
"PhoneNumber":"6543210",
"description":"business calls only, no sales",
"start_availabilty":"2009-12-18T09:30:00.000Z",
"end_availabilty":"2009-12-18T17:45:00.000Z"

},
{

"PhoneType":5,
"prefix":"+33",
"PhoneNumber":"951357456",
"description":""

}
]

}

Profile Content
The content of the Customer Profile follows a schema (a translation of the Business Contact
Attributes), which describes its content with a list of Attribute Schema, apart from extension content,
as shown in the following output example:

{"encrypt":false,"name":"PIN","length":256,"type":"string"},
{"encrypt":false,"name":"Title","length":256,"type":"string"},
{"encrypt":false,"name":"CustomerSegment","length":256,"type":"string"},
{"encrypt":false,"name":"LastName","length":256,"type":"string"},
{"encrypt":false,"name":"AccountNumber","length":256,"type":"string"},
{"encrypt":false,"name":"FirstName","length":256,"type":"string"},
{"encrypt":false,"name":"PhoneNumber","length":256,"type":"string"},
{"encrypt":false,"name":"ContactId","length":256,"type":"string"},
{"encrypt":false,"name":"EmailAddress","length":256,"type":"string"},

The profile schema does not contain information related to extensions.
At runtime, your application can retrieve this schema through the Query Profile Schema operation.
Your application cannot modify the profile schema through Context Services:

• If you wish to modify the profile schema, make modifications to in Configuration Manager via the
Business Attribute "ContactAttributes".

• If you wish to add additional information to the profile at runtime, use the profile extensions.

Extensions
Extensions allow you to extend the content of a profile with additional records. Your application is
fully responsible for the creation and management of this optional content. As stated in the
Preliminary Steps to Using Profiles section, your application must define the extensions' content by
creating the extension. Once the schema is defined, your application can use the extensions by
specifying extension information to the profile submitted with the operations' body, or by using
dedicated operations, as presented below.

Profiles and Identification

Developer's Guide 26

https://docs.genesys.com/Documentation/CS/8.1.x/API/AttributeSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryProfileSchema

Identification Key
The identification key is a combination of attributes used to identify a customer. These attributes (one
or more) belong to the customer profile and/or its extensions.

Identification keys cannot be issued from both the profile and its extensions.

Some identification key samples:

• An identification key consisting of the "name" and "birthdate" attributes from the profile.
• A key based on the "pin" attribute of a single-valued extension used to hold customer pass codes.
• A key based on the "number" attribute of a multi-valued extension used to record the phone numbers

we have seen a customer call from.

When UCS receives a new customer profile and the associated extension data, it builds the indexing
structures according to the specified identification keys, in order to ensure efficient customer
identification.

Read Identification Key for a resource example.

Preliminary Steps to Using Profiles

Before your application can start interacting with customers and recording their information by using
Customer Profile resources, you must create certain types of information that enable you to manage
these profiles. This includes the profile schema, extension schemas, and identification keys.

Creating Extension Schema (Optional)
Operations and resources in this section are part of
If your application only needs to use the predefined profile attributes, you can use them as provided.
But if you need to work with information that is not contained in the existing attributes -- for instance,
for use as identification keys -- you can create extensions that contain this extra information by
creating an extension schema for each additional piece of information.

Your application cannot use an extension if the associated schema does not
exist.
As for the profile schema, the profile extension schema is composed of Attribute Schema which
define the schema content. The following output shows the definition of the single-valued "Address"
extension.

"name":"Address",
"type":"single-valued",
"attributes": [

{"name":"AddressType","type":"integer","default":0},
{"name":"Address","type":"string","length":256},
{"name":"City","type":"string","length":32},
{"name":"County","type":"string","length":32},

Profiles and Identification

Developer's Guide 27

https://docs.genesys.com/Documentation/CS/8.1.x/API/IdentificationKey
https://docs.genesys.com/Documentation/CS/8.1.x/API/CustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/AttributeSchema

{"name":"PostCode","type":"string", "length":10},
{"name":"Country","type":"string","length":32}
]

The creation of the profile extension is possible through the Create Profile
Extension Schema operation. See this example section for detailed information.

Creating Identification Keys (Mandatory)
Operations and resources cited in this section are part of Schema Operations
If your application does not specify identification keys, the only way to access customer information
is to retrieve the customer profile with the customer ID. However, you can use the Create
Identification Key operation to set up an Identification Key. You create these keys by using profile
attributes. For example,you can use a single attribute, or a combination of attributes ("LastName"
and "FirstName" for instance), or a combination of extension attributes if you have created a schema
for a profile extension. You can define as many identification keys as you need, but you should
consider that creating too many identification keys will slow down creation, update, and removal
operations. Once identification keys have been created, your application can continue to work with
customer data, accessing it by means of the Get Identification Keys operation.

Your application only needs to register these schemas and identification keys
once.

Managing Profiles: Creation, Identification, Extensions

The Customer Profile and its extensions should only be created for the storage of customer-level
information. You should use the results of interactions and dialogs with the customer to fill in service,
state, and task information.

Managing a Profile
The Create Customer Profile operation creates an entry for the Customer Profile in UCS Database.
This step must be completed prior to using the profile data in other operations such as:

• Query Customer Profile
• Update Customer Profile

Identify a Customer
Operations and resources in this section are part of Schema Operations
The operation Identify Customer enables your application to retrieve customer profiles based on a
few attribute values passed in as parameters, without specifying the customer ID, as shown in this
example:

GET /profiles/
contacts.phone_number=408-888-3214&extensions=contacts,purchases∈clude_profile=yes

Profiles and Identification

Developer's Guide 28

https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateProfileExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateProfileExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateProfileExtensionSchema#Example
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofSchemaOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateIdentificationKey
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateIdentificationKey
https://docs.genesys.com/Documentation/CS/8.1.x/API/IdentificationKey
https://docs.genesys.com/Documentation/CS/8.1.x/API/GetIdentificationKeys
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofProfileOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/IdentifyCustomer

∈clude_extensions=unique

If no customer profile is returned, your application can create a new profile based on the current set
of information available.

This enables your application to determine the customer's identity without
having to gather as much information. For instance, if your application deals with
calls by using a customer phone number, the customer is easy to identify if he or
she calls back.

Extending the Customer Profile
As stated in the introduction sections, your application can add new types of information to the basic
customer profile by using extensions. If your application needs to record a specific set of data (for
instance, e-mail addresses), your application can create a schema for this extension. Once an
extension schema has been created in UCS, your application can use the new extension and create
associated records. Your application can either:

1. Insert Extension Records for a given customer, or
2. Create Customer Profile or Update Customer Profile with extension records.

Importing Customer Profiles
Available since: 8.1.000.10
The Bulk Profile Import operation enables to import a .csv file which contains a wide set of contacts.
The .csv file must be compliant with RFC4180 and already available on the UCS local file system.
Profiles must match metadata and can include extensions. An identification key can be set to avoid
ambiguities with former profiles when updating the profile database. See Bulk Profile Import for
examples and details.

References

<references />

Profiles and Identification

Developer's Guide 29

https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateProfileExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/InsertExtensionRecords
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/UpdateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/BulkProfileImport
https://docs.genesys.com/Documentation/CS/8.1.x/API/BulkProfileImport

Grouping Customer Profiles

Purpose: To group customer profiles.

Overview

In the following example, the requirement is to enable an "account" or "family" view of multiple
customer profiles. If a new object is created, the profile entity and attribute Group is set to true. If a
multi-valued profile extension points to a group member profile, id-keys can be used. It then becomes
possible to either attach services to the group, or to the member depending on the scenario.

Examples

The following examples are similar with the difference being the way the profiles are created.
Relationship between profiles and group are either "direct link" from entity account owner to other
profiles, or "indirect link" where each profile belongs to a family profile.

Account

There are many Profiles. Some are Admin for one or more other Profiles. For example, a telephony
provider has a single account (billing account) for several persons. One of the persons is an admin for
the account and has rights to change options for each cellular.

Example data:

• Profile with Id="XXXXXXXXXXX-JOHN":

{
CustomerId="XXXXXXXXXXX-JOHN",
LastName:"Doe",
FirstName:"John",
Cellular:"555-123456",
EmailAddress:"john@doe.net",
GroupAdmin: [

{AdminForProfile:"XXXXXXXXXXXX-JANE"},
{AdminForProfile:"XXXXXXXXXXXX-PETER"}

],
ProviderOptions: { AccountInfo:"account number", MemberLevel:"High" }

}

• Profile with Id="XXXXXXXXXXX-JANE":

{
CustomerId="XXXXXXXXXXX-JANE",
LastName:"Doe",

Grouping Customer Profiles

Developer's Guide 30

FirstName:"Jane",
Cellular:"555-987654",
EmailAddress:"jane@doe.net",
ProviderOptions: { AccountInfo:"account number", MemberLevel:"Untouchable" }

}

• Profile with Id="XXXXXXXXXX-PETER":

{
CustomerId="XXXXXXXXXXX-PETER",
LastName:"Doe",
FirstName:"Peter",
Cellular:"555-654321",
EmailAddress:"peter@doe.net",
ProviderOptions: { AccountInfo:"account number", MemberLevel:"Untouchable" }

}

• Two extensions for the example:
• Single-valued extension ProviderOptions with any type of attributes used for the example to

customize Cellular options.
• Multi-valued extension GroupAdmin with attribute AdminForProfile
• Identification keys :

• on attribute EmailAddress from Core Profile
• on attribute Cellular from Core Profile
• on attribute LastName+FirstName from Core Profile
• on attribute AdminForProfile of extension GroupAdmin

• Example scenario:
• John calls to update his cellular account.
• He is identified by his Cellular="555-123456".
• The system knows that he his and admin for Jane and Peter because of the GroupAdmin extension.
• He is asked "Do you want to change settings for your account #1, for Jane's account #2 or for

Peter's account #3?".
• If he enters #2 or #3, the system picks the correct Profile by the Id and can retrieve specific cellular

options.
• ...
• Peter calls to change some options.
• He is identified by Cellular="555-654321".
• The system knows he is not Admin.
• Depending on the requests, the system may "identify" who is admin for the cellular by the id-key on

GroupAdmin.AdminForProfile="XXXXXXXXXX-PETER".
• The system might fail the request stating "need admin rights".

Grouping Customer Profiles

Developer's Guide 31

Family

Each member of a family has its own profile. They belong to the Family Group (same house hold).
This result in slightly different from the previous example because the Family itself is identified as a
profile.
Note: The Account example can also be implemented this way.

Example data:

• Profile with Id="XXXXXXXXXXX-JOHN":

{
CustomerId="XXXXXXXXXXX-JOHN",
LastName:"Doe",
FirstName:"John",
Cellular:"555-123456",
EmailAddress:"john@doe.net",
GroupFamily: { ProfileFamily:"XXXXXXXXXXXX-DOE" }

}

• Profile with Id="XXXXXXXXXXX-JANE":

{
CustomerId="XXXXXXXXXXX-JANE",
LastName:"Doe",
FirstName:"Jane",
Cellular:"555-987654",
EmailAddress:"jane@doe.net",
GroupFamily: { ProfileFamily:"XXXXXXXXXXXX-DOE" }

}

• Family = Profile 'XXXXXXXXXXXX-DOE':

{
CustomerId="XXXXXXXXXXXX-DOE",
LastName:"Doe",
PhoneNumber:"555-1592648",
EmailAddress:"family@doe.net",
PostalAddress: { Address:"5, This Road", ZipCode:65536 }

}

• Extensions:
• Single-valued extension PostalAddress with attributes like 'Zip Code', 'State', etc. This extension

may have values only for the Family since all profiles are to live at the same place.
• Single-valued extension GroupFamily with attribute ProfileFamily pointing to the main family

profile.

• Identification keys:
• on attribute EmailAddress from Core Profile.
• on attribute Cellular from Core Profile.
• on attribute PhoneNumber from Core Profile.
• on attributes LastName+FirstName from Core Profile.

Grouping Customer Profiles

Developer's Guide 32

• on attribute ProfileFamily from extension GroupFamily.

• Example scenario:
• Assuming John sends the request from e-mail or cellular:

• He is identified by id-key Profile.Cellular="555-123456" or Profile.EmailAddress=
"john@doe.net".

• Then his family information is gathered from querying Profile with Id
GroupFamily.ProfileFamily="XXXXXXXXXXXX-DOE".

• Assuming John calls from Home:
• His Family information is matched by id-key Profile.PhoneNumber="555-1592648".
• Members of the family can be identified by id-key on GroupFamily.ProfileFamily=

"XXXXXXXXXXXX-DOE".
• The IVR might question "Who are you? Jane or John?".

Grouping Customer Profiles

Developer's Guide 33

Services, States, and Tasks
Purpose: Gives guidelines for managing Service
information with Context Services.

In versions 8.1.000.10 and higher, you need to check the privileges set according to roles prior to
using the operations described on this page. See Role-Based Access Control for additional details.

About the Service, State, and Task Resources

Services are customer commitments defined by the business application (IVR, Orchestration, Agent
Desktop, etc.) which interacts with the customer. Each service potentially spans multiple interactions
over a variety of media channels and should link to a Customer Profile as soon as it is created or
retrieved through identification operations (read Profiles and Identification.) The Context Services
REST API uses Service, State, and Task resources to manage and store the context information of
your application. Basically, the Service resource is equivalent a top-level container associated with an
overall commitment, which can be divided into a set of States to transition from one to another.
These additional states can be divided into tasks.

Consider, for instance, an application that is a web-based interface, and that includes several online
services, such as 'Booking a hotel reservation'. The service 'Booking a hotel reservation' is in charge
of collecting information for the reservation.

• State 1: Collect Hotel Search Information

Services, States, and Tasks

Developer's Guide 34

https://docs.genesys.com/Documentation/CS/8.1.x/API/CustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/Service
https://docs.genesys.com/Documentation/CS/8.1.x/API/State
https://docs.genesys.com/Documentation/CS/8.1.x/API/Task
https://docs.genesys.com/Documentation/CS/8.1.x/API/Service
https://docs.genesys.com/Documentation/CS/8.1.x/API/State

• Task 1: Collect Time Information (arrival, departure)
• Task 2: Collect Localisation Information
• Task 3: Collect Hotel Criteria

• State 2: Get Proposals
• Task 1: Search offers in the database
• Task 2: Propose offers
• Task 3: Get Detailed Information about the offer

• State 3: Validate Proposal
• Task 1: Get customer approval
• Task 2: Make payment
• Task 3: Validate reservation in the system
• Task 4: Send bills and additional details by e-mail
• Task 5: Collect customer feedback

• And so on.

If a customer starts interacting with the service, the application creates a new service resource to
manage the service's context data, and then nested state and task resources to manage further
states and tasks' context data.

Services, States, and Tasks contents
The standard content of these resources is formal core information, as described in the related
Service, State, Task pages, to determine:

• When the given service, state, or task started;
• Whether it is active or completed;
• Which interactions or customer are related to the given instance.

For each type of resources, the Context Services provide you with a set of operations which manage
this basic data. For instance, in the case of a service, standard use cases imply that your application
should:

1. Start the service,
2. Associate the service with a customer ID-see Anonymous Service for further details;
3. Start and complete similarly states and tasks-see List of State Operations and List of Task Operations;
4. Complete the service once all the nested state and tasks are completed.

Note that your application is fully responsible for managing the status changes for the
nested states and tasks. In other words, if you want to complete a given service, you must
also complete the nested states and tasks.

Services, States, and Tasks

Developer's Guide 35

https://docs.genesys.com/Documentation/CS/8.1.x/API/Service
https://docs.genesys.com/Documentation/CS/8.1.x/API/State
https://docs.genesys.com/Documentation/CS/8.1.x/API/Task
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService
https://docs.genesys.com/Documentation/CS/8.1.x/API/AssociateService
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofStateOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofTaskOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteService

Active Resources
A service, state, or task is active if a customer is still interacting with it. In that case, the service,
state, or task is started, but not complete. Once the resource is completed, it is no longer part of the
active list, but part of the completed list.

Read also Query Services/States/Tasks.

Extensions
The Context Services enable your application to record additional data related to the management of
services, states, or tasks. In our introduction sample of 'Booking a hotel reservation', this would
represent all the information collected through the service. If at any time the customer is
disconnected and reconnects, your application is able to recover all this information with the Context
Services. In this case, your application can define a set of Extension Schema, and then add extension
records which contain this information. As for profile extensions, extension records can be either
"single-valued" or "multi-valued" (see profile attribute values for example).

Read also Extensions.

Preliminary Steps to Using Services

Creating Extension Schemas
Operations and resources in this section are part of Schema Operations
The creation of service, state, and task extensions is optional. However, if your application needs to
extend the information of the service, state and task resources, you must create an extension
schema to define the new extension content prior to any use.

• Use Create Service Extension Schema to provide extensions at the service level.
• Use Create State Extension Schema to provide extensions at the state level.
• Use Create Task Extension Schema to provide extensions at the task level.

The following sample create an Extension Schema which defines the Content of the Feedback
extension:

POST /metadata/services/extensions
{
"attributes":

[
{"name":"FeedbackType","type":"string","length":"10","mandatory":"true"},
{"name":"rating","type":"integer","mandatory":"true"},
{"name":"notes","type":"string","length":256,"mandatory":"false"}

],
"name":"Feedback",
"type":"single-valued"

}

Services, States, and Tasks

Developer's Guide 36

https://docs.genesys.com/Documentation/CS/8.1.x/API/ExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofSchemaOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateServiceExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateStateExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateTaskExtensionSchema
https://docs.genesys.com/Documentation/CS/8.1.x/API/ExtensionSchema

Basic Service, State, and Tasks Management

Operations and resources in this section are part of Service Operations and its subcategories.

Start the Service

1. Start Service: first step in your service management. Your application creates a service instance each
time that a new information context needs to be created. (In our example, each time a customer enters
in the Booking reservation service, UCS creates the core service information, including a service ID
returned as a result of this operation.)
• If you have no information to create or identify the customer, your service is anonymous. In that

case, use a contact key.
• When you start the service, you pass in the operation's body the Service Start Event which

describes the start information.

2. Associate Service: To use later, once you have a customer ID to associate with your service. To get a
customer ID, you need to retrieve profile information (see List of Profile Operations).

The following operation starts a new service with a contact key:

POST /services/start
{

"timestamp": "2009-05-12T12:05:12.145Z",
"interaction_id": "123ABCAADFJ1259ACF",
"application_type":400,
"application_id":40,
"est_duration":60,
"contact_key":"42",
"service_type":100,
"media_type": 1,
"resource_id": 5005,
"resource_type": 2,
"disposition": 10,
"coupon": {

"coupon_name": "DISCOUNTCODE15"
},
"satisfaction": {

"score": 85,
"agentID": 2025

},
"relatedOffers": [

{
"offer_name":"VIP credit card black ed.",
"type":9,
"comments":"proposed to all client"

},
{
"offer_name":"3 times payment GOLD",
"type":4,
"comments":"limited offer"

}
,{
"offer_name":"life insurance",
"type":3,
"comments":"healt check to be done before approval"

}
]

Services, States, and Tasks

Developer's Guide 37

https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofServiceOperations
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartService
https://docs.genesys.com/Documentation/CS/8.1.x/API/CreateCustomerProfile
https://docs.genesys.com/Documentation/CS/8.1.x/API/IdentifyCustomer
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartEventList#Service_Start_Event
https://docs.genesys.com/Documentation/CS/8.1.x/API/AssociateService
https://docs.genesys.com/Documentation/CS/8.1.x/API/ListofProfileOperations

}

Manage States or Tasks for a given Service
Your application can use both States and Tasks, or Tasks only.

1. Start State or Start Task: In the corresponding Start Event, you must specify to which service the state
or task belongs by filling the 'service_id' parameter.

2. Perform State Transition: if your service contains several states, you can perform state transition instead
of completing a state and starting a new state.

3. The state transition does not complete the tasks which belong to the completed state. Your application
must complete them before performing this operation.

The following example shows a state transition:

POST /services/735692/states/transition
{

"timestamp": "2009-05-07T12:05:20.157",
"session_id": "11000ABC-80236C1A-1010",
"interaction_id": "123ABC908ABFFD8080",
"from": {

"state_id": 1001,
"disposition": 1,
"disposition_desc": "SUCCESS",
"Feedback":

{ "FeedbackType":"survey","rating":7,
"notes":"warm welcome at frontdesk, thanks for the nice trip"

},
"Satisfaction": [
{

"rating":2,
"pertinence":8,
"usefull":true,
"place":"Terranova mexico resort"

},
{
"rating":8,
"pertinence":4,
"usefull":false,
"place":"Fancy resort Paris"

}
]

},
"to": {

"state_type": 8,
"est_duration": 500,
"Sponsoring": { "Rank":"first","expire":7,

"notes":"give customer free meal" }
}

}

Query the Services/States/Tasks for a Given Profile
In Query Services, Query States, and Query Tasks operations, you can query lists of active or
completed resources, by filtering in the URL the active or completed status of the resources. For

Services, States, and Tasks

Developer's Guide 38

https://docs.genesys.com/Documentation/CS/8.1.x/API/StartState
https://docs.genesys.com/Documentation/CS/8.1.x/API/StartTask
https://docs.genesys.com/Documentation/CS/8.1.x/API/PerformStateTransition
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServices
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStates
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTasks

instance, in Query Services:

• Active Services: GET /customers/${customer_id}/services/active
• Completed Services: GET /customers/${customer_id}/services/completed

In addition, the Query Services and Query States operations enable to retrieve the nested states and/
or tasks, within the results. For instance, the following query operation returns the active services
within their active states associated with the customer profile ABC1234. Operation

GET /customers/ABC1234/services/active?active_states=true

Response

[// returned in an array
{ "customer_id": "ABC1234",
"service_id": 4692834,
"est_duration": 86400,
"started": {
"timestamp": "2009-05-07T12:05:20.157",
// additional Start Event fields

},
"active_states":
[// included given specification of "results" attribute
{ // array of one or more State objects
"state_id": 5005,
"state_type": 8, // service delivery
"started": {

"timestamp": "2009-05-07T12:08:53.298",
// additional Start Event fields

}
}

]
}]

Complete Service/State/Task
When your customer stops interacting with the given service, state, or task, you must complete this
resource and mark it as terminated in the UCS database. This enables you to filter the result of query
operations based on the resource status (as described in the Active Resources section).

• You are responsible for performing the Complete Service, Complete State, Complete Task operations for
any service, state, or task that you started.

• These operations apply only to the resource specified in the operation's parameter and they do not
modify the status of the nested states and tasks, if any.

The only case which does not force you to explicitly complete a state with the Complete State
operation, is Perform State Transition, which completes the given state then starts a new state.

Tip: to make sure that you correctly completed the states and tasks of a given service,
use the Query States and Query Tasks operation with active filters to check that no
resources remain active.

Services, States, and Tasks

Developer's Guide 39

https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServices
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryServices
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStates
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteService
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteState
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteTask
https://docs.genesys.com/Documentation/CS/8.1.x/API/CompleteState
https://docs.genesys.com/Documentation/CS/8.1.x/API/PerformStateTransition
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryStates
https://docs.genesys.com/Documentation/CS/8.1.x/API/QueryTasks

Read More

• Extensions

Services, States, and Tasks

Developer's Guide 40

	Developer's Guide
	Table of Contents
	Developer's Guide
	Business Attributes
	Anonymous Service
	Server Mode
	Basic Access Authentication
	Role-Based Access Control
	Extensions
	Profiles and Identification
	Grouping Customer Profiles
	Services, States, and Tasks

