
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Deployment guidelines for async and regular chat

Chat Server Administration Guide

5/10/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Deployment guidelines for async and
regular chat
The page provides some important guidelines regarding regular (traditional) and async
(asynchronous) chat deployment.

• Comparison of regular vs. async chat mode
• Comparison of short polling (REST-API-based) vs. CometD-based chat
• Sizing guidelines based on comprehensive stress testing
• Async chat workflow recommendations
• How disconnects and idle timeouts work

Regular vs. async chat mode

In general, both async and regular chats are processed the same way by all components. However,
async chat provides additional capabilities that require a bit more planning and workflow
implementation.

Regular Chat Async Chat
Duration of single
conversation

Lasts only minutes or dozens of
minutes.

Could potentially last for days or
even weeks.

Agent handling

An agent can:

• Accept the chat session
• Transfer the chat session
• Stop the chat session

In addition to the agent handling
found in regular chat, an agent
can also:

• Place the chat session on-hold
• Resume the chat conversation

at a later time by re-
activating the interaction
from the workbin

Mobile oriented Can be implemented, but not
suited for lengthy conversations.

Suitable for mobile applications
as it permits lengthy
conversations with periods of
inactivity.

Workflow
Mostly used for routing purposes
(in other words, selecting the
best available agent).

Additionally, must handle re-
activation of interactions placed
on hold after a qualified event
occurs (for instance, a new
incoming message from a
customer, or an async idle
timeout expiration).

Deployment guidelines for async and regular chat

Chat Server Administration Guide 2



Regular Chat Async Chat

Performance implications
Must be sized to conduct a
certain number of active chat
sessions.

Must take into the account the
presence of a large number of
chat sessions, most of which are
expected to be in a dormant
state. Please see below about
sizing guidelines.

Short polling vs. CometD-based chat

End-user (customer-oriented) web or mobile chat applications must communicate with Genesys
Mobile Engagement (GMS) through two alternative APIs:

• Short polling (REST API) - For this API, the chat application is required to send frequent (usually every
other 3 seconds) polling requests to keep the chat session transcript updated.

• CometD-based - This API can utilize either WebSockets or long-polling. This provides chat session
transcript updates more promptly, on the customer side.

While the CometD approach naturally appears more efficient (as it also reduces the overall load onto
the system by eliminating unproductive API calls), the table below provides a comparison of different
aspects which should be taken into account when selecting the best approach for your deployment
and implementation:

Short polling (REST API) CometD-based

Performance

Consumes more CPU and traffic
resources as it produce a lot of
unproductive API calls (according
to research, on average 98.5% of
polls are wasted). So, if a
message is expected to be
posted into the chat session
every 30 seconds, an extra 10
unproductive API requests must
be processed during this time by
the GMS and Chat Server
components. Basically, this
means that the load on these
components are measured on
how many concurrent chat
sessions an instance can hold,
independently of the scenario
density (see Sizing Guide, Setting
Load Limits, and Health
Monitoring for more information).

CPU and traffic resources are
used mostly for the productive
load.

Connections

Each API call is executed on a
separate connection, which is
closed immediately after
receiving an HTTP response. The
number of concurrent
connections (between GMS and

Number of concurrent
connections is similar to the
amount of concurrent chat
sessions. Also, GMS imposes a
limitation of only one CometD
connection every chat session.

Deployment guidelines for async and regular chat

Chat Server Administration Guide 3

https://enu.docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2
https://enu.docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2CometD
https://enu.docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSizing
https://enu.docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSizing
https://enu.docs.genesys.com/Documentation/ESChat/latest/Admin/ChatSizing


Short polling (REST API) CometD-based
Chat Server) depend on the
number of concurrent chat
sessions, divided by the short
polling interval (usually 3
seconds).

Complexity
Simple to implement and
troubleshoot (as it is based on
pure REST API).

Troubleshooting requires the
knowledge of CometD protocol
functionality.

Client library There are numerous stable
versions of HTTP REST libraries.

CometD client library is required,
which increases the complexity
of the chat web application.

Timeouts (in Chat Server)

The flex-disconnect-timeout
configuration option is used to
disconnect a chat participant
who has not sent any API
requests after a specified amount
of time.

The flex-push-timeout
configuration option is used to
disconnect a chat participant
who is not confirmed by GMS as
alive after a specified amount of
time.

Sizing recommendations

On the high level, sizing guidelines depend on various factors:

• Short polling (GMS Chat API Version 2) vs. CometD (GMS Chat API Version 2 with CometD) mode:
• Short polling produces a constant "background" (or, "noise") load onto GMS and Chat Server,

thereby consuming much more CPU and network resources. Also, it is important to appropriately
tune the operational system Transmission Control Protocol (TCP) parameters to minimize the
TIME_WAIT state duration, as each short polling request leads to the opening and closing of the TCP
connection.

• The CometD approach requires you to keep a long-living connection to GMS for each chat session. It
should be noted that some load balancing solutions do not handle long-living connections properly
and might result in the closure of an inactive connection.

• In chat async mode, dormant vs. active sessions:
• Active chat sessions usually constitute only a fraction of all ongoing async chat sessions. The

number of such chat sessions should be around the number of active chat agents, multiplied by the
capacity of agents (or, how many parallel chat session an agent can work on). These chat sessions
consume almost all assigned resources (first of all CPU).

• Dormant chat sessions are those which do not have an active agent (or bot) in the chat session. So,
for example, in short polling mode the customer-facing application must minimize the resource
consumption by reducing (or completely eliminating) the periodic short polling requests.

• Scenario density: Using a CometD approach, the load scales linearly with the number of messages sent
from chat participants during a certain time period. Using the short polling approach, the load is mostly
dependent on the “noise“ load, since polling requests take up most of the packets being processed.

• In High Availability (HA), UCS vs. Cassandra:
• UCS-based HA option requires less deployment and maintenance efforts, and guarantees the

presence of the latest transcript version for ongoing chat sessions in the UCS database (DB).

Deployment guidelines for async and regular chat

Chat Server Administration Guide 4

https://enu.docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2
https://enu.docs.genesys.com/Documentation/GMS/latest/API/ChatAPIv2CometD


However, with large deployments, UCS and UCS DB might be overloaded with intermediate
transcript updates which are generated by Chat Server after each chat session message.

• Cassandra allows you to off-load UCS from an unnecessary load. However, in the case of an
unplanned Chat Server switch-over during the ongoing chat session, the chat transcript can never
be propagated into the UCS record if the chat session cannot be restored on another Chat Server
instance (in other words, when it coincides with a customer-facing chat application failure or
closure).

Important
For async chat, especially in short polling mode, a customer-facing web or mobile chat
application must noticeably reduce the frequency of short polling requests when it
detects that a session was placed on hold (in other words, when the agent leaves chat
session.

Performance benchmarks
The following benchmarks were produced on:

• Hardware with "Intel Xeon E7-8880L 2 GHz" with a single instance of Chat Server which consumed in
average one CPU core. At the maximum possible load, Chat Server can consume no more than 2 CPU
cores since all chat-processing operations are executed in a single thread (similar to Node.JS) and only
auxiliary activity operations are executed by a few other working threads.

• Two instances of GMS, each consuming approximately one CPU core.

The average length of a chat session was around 35 seconds (with 3 messages from a customer and
3 messages from an agent), which is a very dense scenario. Each cell in the table contains the total
number of concurrent chat sessions (and active vs. dormant ratio).

Mode Active to dormant sessions ratio
All active 1:10 1:50

Short polling mode 1000
8000
(800 / 7200)

35000
(700 / 34300)

CometD-based mode 1500
11000
(1000 / 10000)

39000
(900 / 38100)

Important
These are performance load test benchmarks; these numbers are not expected in a
real-life scenario.

Deployment guidelines for async and regular chat

Chat Server Administration Guide 5



Async chat workflow recommendations

For async chat, the workflow (or the set of Universal Routing Server [URS] or Orchestration Server
[ORS] strategies) must additionally provide the handling of chat sessions being placed on hold by an
agent to the regular chat workflow. The on-hold session can be processed in the follow ways:

• Upon the qualified event (a message or a configured notice) in the chat session from a customer, Chat
Server updates a special key-value pair (KVP) in the corresponding interaction, which is handled by
Interaction Server. As you see it implemented in the Chat Business Process Sample, the workflow can
force the interaction for routing, which routes the interaction to any other agent after several attempts
of trying to route it to the last handling agent.

• Alternatively, the workflow can place the interaction back to the last handling agent's workbin, if that
last handling agent is not available at the moment. However, in this case, the workflow must
implement the "escape" to avoid this interaction being stuck forever, if that last handling agent never
comes back to the interaction.

• With a custom desktop, the workflow might not force the interaction to routing at all upon the qualified
event. In this case, the agent desktop can directly subscribe to notifications from Interaction Server
when the interaction properties are changed in the agent workbin.

• The workflow must ensure that interactions are not stuck when placed on hold. In the Chat Business
Process Sample, this is implemented in async-chat-main-check-view view of async-chat-main-
queue with the condition GCTI_Chat_AsyncCheckAt < _current_time(), where
GCTI_Chat_AsyncCheckAt is set by Chat Server to the sum of async-idle-alert and async-idle-close
configuration options of Chat Server application.

How disconnects and idle timeouts work

Chat Server configuration options allows you to specify timeouts to control two different functional
areas:

• The disconnect of a chat session participant, which leads to the removal of a chat participant from a
chat session.

• The absence of an activity from participants in a chat session, which leads first to an alert notification
and then the closing of a chat session (if no activity is being produced since the alert was sent).

To describe each functional area, the following definitions must be introduced:

• "Protocol inactivity" means the absence of any protocol requests from a client to Chat Server for a
certain period of time. It is used to detect the disconnect of a chat participant. For example, if the client
application sends short polling refresh requests it still resets the timeout for protocol inactivity even if it
does not carry any useful load. So, the client is considered active on the protocol communication level.

• "Session inactivity" means the absence of qualified events (such as messages) from the chat
participants with full visibility in the chat session. For example, if a customer and an agent are not
sending messages for a certain period of time, then it is considered as a session inactivity. If, at the
same time, the agent communicates with another agent invisibly from a customer (or, consultation
call), it does not affect this decision (as this conversation is not fully visible for all chat session
participants).

Deployment guidelines for async and regular chat

Chat Server Administration Guide 6

https://enu.docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP
https://enu.docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP
https://enu.docs.genesys.com/Documentation/ESChat/latest/Admin/CHATBP


Important
A chat session stays alive in Chat Server until at least one participant is present. As
soon as the last participant leaves, Chat Server closes the chat session forever and it
cannot be resumed again.

Chat session participant disconnect and removal
In terms of connectivity, chat session participants can be processed differently depending on how the
application (representing the participant) communicates with GMS and/or Chat Server:

• An agent (or bot) participant communicates with Chat Server via persistent TCP network connection,
thus the disconnect leads to the immediate removal of a participant from a chat session.

• A chat participant, represented as a customer in a chat session (or, "client participant") can
communicate with GMS in three different modes. Each mode utilizes different configuration options:
• Short polling (REST API). In this mode, Chat Server uses flex-disconnect-timeout which defines

the maximum amount of time of protocol inactivity. As soon as the timeout expires, Chat Server
removes the participant from a chat session. If this is the last participant, Chat Server closes the
chat session.

• CometD only. If a customer web application communicates with GMS over CometD, GMS
subscribes to unsolicited notifications from Chat Server for this chat participant immediately after
the chat session is successfully created by Chat Server. This request forces Chat Server to disable
flex-disconnect-timeout for the chat participant and instead uses flex-push-timeout for the periodic
querying of GMS to confirm that the participant is still connected over CometD. When GMS sends
the confirmation, it tells Chat Server to consider the chat participant alive. As soon as GMS detects
the disconnect over CometD, it sends an "unsubscribe" request, which forces Chat Server to enable
flex-disconnect-timeout until the new subscribe request is sent by GMS to Chat Server (upon client
re-connection over CometD to GMS).

• CometD and short polling with subscription for either mobile or custom-http push
notification. This mode operates almost exactly the same way as "CometD only" except that GMS
never sends an "unsubscribe" request upon a CometD disconnect to Chat Server. This forces Chat
Server to use only flex-push-timeout to ping GMS. In this mode, flex-disconnect-timeout is activated
only when a client chat participant is removed from the chat session forcibly by another chat
participant (such as an agent or bot).

Important
When Genesys agent desktops (WDE and WWE) receive the event indicating that a
client left the chat session (for any reason), the agent desktop automatically sends
the request to Chat Sever to close the chat session. A custom desktop can implement
this differently if needed, as Chat Server keeps the chat session alive until the last
participant leaves the chat session.

Deployment guidelines for async and regular chat

Chat Server Administration Guide 7



Inactivity control and chats session closure
We define chat session inactivity as the absence of a qualified event in a chat session for a certain
period of time (defined by timeouts in configuration). A qualified event can be a message, a notice
(as defined by async-idle-notices or include-notices), and a participant (the agent) joining or leaving
the chat session. Only events with full visibility (in other words, visible to all participants) are taken
into account here.

There are two complementary inactivity control configurations in Chat Server:

• Generic chat configuration (applicable both for async and regular chat sessions).
• It is enabled:

• If the option enable in section [inactivity-control] is set to true.
• When both a customer and an agent (bots are not considered agents in idle control

configuration) are present in the chat session. Once the last agent leaves the chat session, Chat
Server disables this configuration.

• After a certain period of inactivity (defined by option timeout-alert), Chat Server sends an alert
notification (with text defined in message-alert option).

• If there is still no activity (for the period defined by option timeout-alert2), Chat Server sends the
second alert (with message defined in option message-alert2).

• If there is still no activity (for the period defined by option timeout-close), Chat Server sends a
"close" notification and immediately closes the chat session.

• Async only chat configuration (applicable only for async chat session):
• Is enabled from the very start of an async chat session. It is activated independently of the presence

of an agent in a chat session (in other words, it is activated even if you have only a customer in the
chat session).

• After a certain period of inactivity (defined by option async-idle-alert), Chat Server sends an alert
notification (with text defined in the message-alert option).

• If there is still no activity (for the period defined by option async-idle-close), Chat Server sends a
"close" notification and immediately closes the chat session.

Important
Chat Server resets the inactivity period after any qualified event occurs in the chat
session. Both inactivity configurations could be activated simultaneously.

Deployment guidelines for async and regular chat

Chat Server Administration Guide 8

https://enu.docs.genesys.com/Documentation/Options/latest/ES/ChatServer-inactivity-control

	Chat Server Administration Guide
	Deployment guidelines for async and regular chat

