3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Framework Deployment Guide

Transaction Serialization

5/6/2025



www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.


Transaction Serialization

Transaction Serialization

Configuration Server can process data change (write) requests so that concurrent data changes are
processed correctly and do not interfere with each other. Transaction serialization prevents data
change transactions from overlapping and potentially causing a loss of data integrity. It involves the
deferral of transaction data change requests so that each request can be processed completely,
without impacting, or being impacted by, other requests.

Transaction Serialization might be required when a non-Genesys application has been
used to modify the configuration.

This section describes several ways that you can use transaction serialization to preserve data
integrity without jeopardizing system performance. You must enable transaction serialization before
you can configure any of the features described in this section.

Overview

Without transaction serialization, Configuration Server starts processing data change requests as
soon as they arrive, regardless of any other requests that are being processed. If the first request
being processed changes something upon which another request being processed depends, problems
can include corrupt data, application faults, or even system shutdown.

Transaction serialization solves this problem by ensuring that only one data change request per
session is being processed at a time. Configuration Server can accept new requests while processing
a request, but does not start the next one until the first request is finished. Data write and data read
requests are stored in the same queue and processed in FIFO (first-in, first-out) order. Data read
requests from a client whose previous write requests are deferred must also wait for the preceding
request to finish before being processed. This ensures that a client can view updated data from the
database.

There is one queue for each client making a request. Configuration Server and Configuration Server
Proxy clients are treated the same, so there is no potential for overlap and interference between
clients.

Connect/Authorize requests are an exception. They are not considered transaction requests and
Configuration Server processes them immediately. Internal requests are not meant to be deferred,
even those that generate data change. They are processed immediately, but the change notification
sent to the clients is deferred. Some of the internal requests that do not get deferred are:

* Updates to last-login and last-login synchronization information

e Password changes

Framework Deployment Guide 2



Transaction Serialization

e Forced password changes as a result of the Change password on next login feature

Enabling Transaction Serialization

To enable transaction serialization, set the option serialize-write-transactions in the [system] section
of the Configuration Server Application object to true. If this option is not configured or is set to
false, requests are not deferred.

Warning

Use extreme caution if you decide to disable transaction serialization after having first
enabled it. Doing so will release all deferred requests and Configuration Server might
become overwhelmed. Genesys recommends that you not disable this feature unless
asked to.

Expiration of Deferred Requests

Transaction serialization must be enabled (serialize-write-transactions is set to true)
to use any of the options in this section.

Requests are classified into three categories: general clients' requests; requests from Configuration
Server Proxies reconnecting to the master Configuration Server; and internal requests, generated by
Configuration Server itself when processing other requests. Expiration and handling is different for
each type, as described later in this section.

Deferred requests from disconnected clients are removed from the queue. If the client disconnected
from the master Configuration Server, a response is sent immediately that the client has
disconnected. General and Configuration Server Proxy requests are discarded. Internal requests are
processed.

General Requests

To specify the time interval after which general requests expire, set deferred-requests-expiration to
the desired time interval, in seconds. A value of 0 (zero) means that the requests never expire.

If a deferred general request has not been processed during the specified time interval, it expires.
The request is removed from the queue, and the requesting client notified with the following message

ERROR CFGReadOnlyOperationalModeActivated/Transaction expired

Deferred non-transaction requests, such as read requests, that expire are removed from the queue
and processed as usual.

Framework Deployment Guide 3



Transaction Serialization

Requests from Configuration Server Proxies in Process of Reconnecting

Requests coming from Configuration Server Proxies in the process of reconnecting have much higher
expiration time, determined automatically, based on the value of proxy-load-timeout.

If the deferred request from a reconnecting Configuration Server Proxy expires, the proxy server is
disconnected, and must reconnect to the master Configuration Server from the start.

Expiration of Internal Requests from Configuration Server

Internal requests are password change requests triggered by the Change Password On Next Login
feature, or an overridden account expiration because of login and last-login notifications. These
requests never expire, and are processed even if the corresponding clients disconnected while the
requests were deferred.

Transaction Throttling

Transaction throttling addresses the problem of poor system performance because of, for example,
an accumulation of data change notifications generated by massive data updates in the outgoing
data buffers of Configuration Server and/or in the incoming data buffers of the clients, or a low
bandwidth connection between Configuration Server and its clients (including Configuration Server
Proxy). As a result, there was sometimes a significant delay in notification processing, excessive
memory usage, and ultimately disconnections due to slow client responses.

When the throttling feature is enabled, unprocessed transaction requests are deferred in the same
way as they are during transaction serialization. Processing of the deferred requests occurs in the
same manner (that is FIFO, complete one request before starting the next). The functionality is
invisible except for some delay due to the deferral. Data read requests from other clients who do not
submit transaction requests, remain unaffected in both the timing of the processing of their requests
and their processing order.

Implementation

To enable transaction throttling, do the following options in the [system] section of the Configuration
Server Application:

1. Ensure that transaction serialization is enabled (serialize-write-transactions is set to true). If transaction
serialization is disabled, transaction throttling cannot be used.

2. Set throttle-updates-interval in the [system] section of the Configuration Server Application to the
desired time interval.

Tip
When configuring this option, keep in mind that if actual load consistently exceeds the
rate specified by this option for a significant time, deferred unprocessed requests will

accumulate in the input queue and will be eventually cancelled as defined by the
value of the deferred-requests-expiration option. To avoid this happening, consider

Framework Deployment Guide 4


https://enu.docs.genesys.com/Documentation/IW/Current/Dep/TransSerial#txSerial

Transaction Serialization

adjusting throttle-updates-interval accordingly, to account for the expected actual
load.

Transaction Deferral for Primary or Backup Configuration Server
Proxy Loading and Reloading Data

This feature defers all transaction data requests whenever a primary or backup Configuration Server
Proxy is loading (or reloading) data from the master Configuration Server. This ensures that the
notifications related to the load request are sent only after the full load is completed. Otherwise,
because of the size of the data being loaded, notifications might be sent before the loading is
complete, potentially harming the data in the proxy server's memory. After the loading is complete,
all deferred requests are released (in FIFO order), and processed.

Implementation

This feature is always enabled, so long as transaction serialization is also enabled (serialize-write-
transactions=true).

Framework Deployment Guide



	Framework Deployment Guide
	Transaction Serialization

