
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Configuration API

API Reference

5/6/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Configuration API
• 1.1 Accessing the Co-browse and Chat APIs
• 1.2 Co-browse Configuration Options

API Reference 2



Configuration API
This API configures Co-browse and its integration with other media. It is also used to subscribe to the
main Co-browse JavaScript API and the Chat API.

Important
Co-browse JavaScript is included in the Integrated JavaScript Application. You can
configure Co-browse by modifying the JavaScript included in your webpages, also
known as instrumentation. Before continuing, make sure you have read and
understood Website Instrumentation#Basic Instrumentation and Integrated JavaScript
Application#Configuration

Important
Configuration is optional. If any configuration options are not present, Co-browse will
use pre-defined defaults.

Tip
To configure integration with chat, see Integrated JavaScript
Application#Configuration The integration section of the configuration API is
deprecated and support may be discontinued in later version of the integrated
JavaScript Application.

Accessing the Co-browse and Chat APIs

Tip
This section is a quick start guide. To better understand API access, read Integrated
JavaScript Application#Obtaining Chat and Co-browse APIs.

Since the main Co-browse JavaScript file is added to the page asynchronously, you cannot instantly
access the Co-browse and Chat APIs. Instead, you must create a function that will accept the APIs as
an argument. There are two approaches to creating this function.

You can assign the function to the special property of a global configuration variable:

Configuration API

API Reference 3

https://enu.docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration
https://enu.docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation
https://enu.docs.genesys.com/Documentation/GWE/8.1.2/Developer/GCBIntegration#Configuration
https://enu.docs.genesys.com/Documentation/GWE/8.1.2/Developer/GCBIntegration#Configuration
https://enu.docs.genesys.com/Documentation/GWE/8.1.2/Developer/GCBIntegration#Configuration
https://enu.docs.genesys.com/Documentation/GWE/8.1.2/Developer/GCBIntegration#Configuration
https://enu.docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Obtaining_Chat_and_Co-browse_APIs
https://enu.docs.genesys.com/Documentation/GWE/latest/Developer/GCBIntegration#Obtaining_Chat_and_Co-browse_APIs


<script>
var _genesys = {

onReady: function(APIs) {
APIs.cobrowse // Co-browse API
APIs.chat     // Chat widget API

}
};
</script>
<INSTRUMENTATION_SNIPPET>

Alternatively, you can modify configuration to make the APIs accessible at any point in your
application through a _genesys global variable.

To do this, you must first assign an array to the onReady property:

<script>
var _genesys = {

onReady: []
};
</script>
<INSTRUMENTATION_SNIPPET>

You can then obtain the APIs at any point in your application using the following code snippet:

_genesys.onReady.push(function(APIs) {
APIs.cobrowse // Co-browse API
APIs.chat     // Chat widget API

});

Tip
For more information on the <INSTRUMENTAITON_SNIPPET>, see Web Site
Instrumentation#Basicinstrumentation.

Co-browse Configuration Options

Example configuration with default values:

var _genesys = {
// defaults:
cobrowse: {

disableBuiltInUI: false,
primaryMedia: undefined,
css: {

server: true
},
onReady: function(cobrowseApi) {}

}
};

Configuration API

API Reference 4

https://enu.docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation
https://enu.docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation


Tip
For backward compatability with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. The use of _gcb is deprecated and may
be discontinued in later versions. If you are using _gcb, we recommend that you
switch to _genesys.

The following options are configurable as properties of an object passed to _genesys.cobrowse:

disableBuiltInUI

Default: false

Set to true to use a custom Co-browse UI. Use the Co-browse API to implement a custom UI.

Example:

var _genesys = {
cobrowse: {

disableBuiltInUI: true
}

};

You can still start the Co-browse session with the configuration above but the main components of
the UI such as the toolbar and notifications will be absent.

primaryMedia

Default: Built-in chat

Used to pass an object implementing an external media adapter interface. By default, the built-in
chat is used.

Example:

<script>
var myPrimaryMedia = {

initializeAsync: function(done) { /* initialize your media here and then call done() */ },
isAgentConnected: function() { /* return true or false depending on whether an agent is

connected */ },
sendCbSessionToken: function(token) { /* send the Co-browse session token to agent */ }

};
</script>

<script>
var _genesys = {

cobrowse: {
primaryMedia: myPrimaryMedia

}
};
</script>
<INSTRUMENTATION SNIPPET>

Configuration API

API Reference 5



See External Media Adapter API for more details.

Warning
If Co-browse does not detect any primary media or detects that the agent is not
connected with the primary media, Co-browse will still ask the user, "Are you on the
phone with representative?" before starting the Co-browse session.

css

Default: Server synchronization strategy, {server: true}

This option manages the CSS synchronization strategy. Additional CSS synchronization on top of DOM
synchronization allows you to replay style changes that occur when the user moves his or her mouse
over an element with a :hover style rule.

For example, if you have the following CSS, Co-browse CSS synchronization makes the underlining
visible to the agent when the consumer moves her mouse over a link, and vice versa, the underlining
will be visible to the user when the agent moves the mouse over a link:

a:hover {
text-decoration: underline;

}

There are two strategies for CSS synchronization, server and browser.

Server strategy is the default and preferred setting. The server strategy setting allows the Co-
browse server to proxy every CSS resource, including inline CSS. This strategy synchronizes CSS
hover effects regardless of the domain the CSS resource is loaded from.

Example:

<script>
var _genesys = {

cobrowse: {
css: {

server: true
}

}
};
</script>

Important
If the css option is not specified, the Co-browse JavaScript application behavior is
equivalent to the configuration snippet above.

Configuration API

API Reference 6



Warning
There are limitations on handling invalid CSS. This may lead to partial or complete
loss of hover synchronization. It may also cause partial failure of general style
synchronization. See Troubleshooting CSS Synchronization for details.

Browser strategy is also available but it is a legacy setting and has the following limitations:

• Browser strategy cannot synchronize CSS hover effects if the CSS was loaded from another domain or
sub-domain.

• Browser strategy cannot properly handle browser specific CSS in :hover rules.

Example:

#menu {
background: #FFFFFF;

}
#menu:hover {

background-image: -webkit-linear-gradient(top, #444444, #999999); /* Chrome 10-25, iOS
5+, Safari 5.1+ */

background-image:         linear-gradient(to bottom, #444444, #999999); /* Chrome 26,
Firefox 16+, IE 10+, Opera */
}

If you have the CSS above while using browser CSS synchronization and the agent and user
have different browsers, the menu will be kept white (first CSS rule) for the slave when the
consumer moves his or her mouse over the menu.

• Browser strategy does not support the remote execution mode of applying hover effects. Consider the
case where the agent moves his or her mouse over a menu item and a sub-menu is shown by CSS
behavior. In server mode, the sub-menu will be shown on the master side first and only then
propagated to the slave. The agent will not see anything the user has not already seen. In browser
mode, the agent will see the change immediately and only then will it be propagated to the master
side.

Example browser strategy configuration:

<script>
var _genesys= {

cobrowse: {
css: {

browser: true
}

}
};
</script>

Both strategies may be activated at the same time. For a few cases, this may result in better content
synchronization.

Example:

<script>
var _genesys = {

Configuration API

API Reference 7

https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/TestingGCB#Troubleshooting_CSS_Synchronization


cobrowse: {
css: {

browser: true,
server: true

}
}

};
</script>

maxOfflineDuration

Default: 600 (seconds)

This option specifies the time in seconds that a reference to a Co-browse session is stored after page
load. The default value is 600 seconds (10 minutes). If this period expires, the Co-browse session will
end by time out.

Important
If you modify this option, it must match the same option on the server, maxInterval
Option.

disableWebSockets

Default: false

Use this option if you need to disable WebSocket communication such as when your load balancer
does not support WebSockets and you do not want to wait for Co-browse to automatically switch to
another transport.

Important
Due to the highly interactive nature of Co-browse, we highly recommended you do
not disable WebSockets. We recommend that you configure your load balancers/
proxies infrastructure to support WebSockets. Disabling WebSockets may have a huge
impact on Co-browse performance.

Configuration API

API Reference 8

https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval
https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval

	API Reference
	Configuration API

