
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Configuration API

API Reference

5/6/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

• 1 Configuration API
• 1.1 Accessing the Co-browse and Chat APIs
• 1.2 Disabling Chat or Co-browse
• 1.3 Configuring the Co-browse and Chat Buttons
• 1.4 Co-browse Configuration Options

API Reference 2

Configuration API
This API configures Co-browse and its integration with other media. It is also used to subscribe to the
main Co-browse JavaScript API and the Chat API.

Co-browse is configured via a global _genesys variable. To configure Co-browse (and/or Chat), create
a <script> such as the following example and add it to your instrumentation:

<script>
var _genesys = {

cobrowse: {
/* Co-browse configuration options */

},
chat: {

/* Chat configuration options */
}

};
</script>
<INSTRUMENTATION_SNIPPET>

Important
• Co-browse is designed to make configuration optional. If any configuration options are

not present, Co-browse will use the pre-defined default values.
• For reference on Chat configuration options, see startChat Options. All options specified

in _genesys.chat are internally passed to the startChat() method call.

Warning
For backward compatibility with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. This is deprecated and may be
discontinued in later versions, so it is recommended that you switch to _genesys
immediately if you are currently using _gcb.

Accessing the Co-browse and Chat APIs

Since the main Co-browse JavaScript file is added to the page asynchronously, you cannot instantly
access the Co-browse and Chat APIs. Instead, you must create a function that will accept the APIs as
an argument. There are two approaches to creating this function.

You can assign the function to the special property of a global configuration variable:

Configuration API

API Reference 3

https://enu.docs.genesys.com/Documentation/GWE/latest/API/StartChat#options

<script>
var _genesys = {

onReady: function(APIs) {
APIs.cobrowse // Co-browse API
APIs.chat // Chat widget API

}
};
</script>
<INSTRUMENTATION_SNIPPET>
// or
<script>
var _genesys = {

cobrowse: {
onReady: function(cobrowseApi) { ... }

}
};
</script>
<INSTRUMENTATION_SNIPPET>

Alternatively, you can modify configuration to make the APIs accessible at any point in your
application through a _genesys global variable.

To do this, you must first assign an array to the onReady property:

<script>
var _genesys = {

onReady: []
};
</script>
<INSTRUMENTATION_SNIPPET>
// or
<script>
var _genesys = {

cobrowse: {
onReady: []

}
}
</script>
<INSTRUMENTATION_SNIPPET>

You can then obtain the APIs at any point in your application using the following code snippet:

_genesys.onReady.push(function(APIs) {
APIs.cobrowse // Co-browse API
APIs.chat // Chat widget API

});
// or
_genesys.cobrowse.onReady.push(function(cobrowseApi) { ... });

Tip
For more information on the <INSTRUMENTAITON_SNIPPET>, see Web Site
Instrumentation#Basicinstrumentation.

Configuration API

API Reference 4

https://enu.docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation
https://enu.docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation

Disabling Chat or Co-browse

You can disable the built-in Chat, or disable Co-browse (in order to use only Chat). To do that, pass
the value false to the respective configuration subsection:

<script>
var _genesys = {

chat: false
};
</script>

<script>
var _genesys = {

cobrowse: false
};
</script>

Configuring the Co-browse and Chat Buttons

Configuration API enables you to configure the built-in reactive buttons using _genesys.buttons. For
example:

<script>
var _genesys = {

buttons: {
chat: false,
position: 'right'

}
};
</script>

The _genesys.buttons section enables some basic configuration of the Live chat and Co-browsing
buttons. It has three optional properties:

• position: Can be either left (default) or right
• cobrowse: defaults to true

• chat: defaults to true

Note that you can override only the properties that you want to be changed. Other properties will be
used with their default values. For example this configuration:

var _genesys = {
buttons: {

chat: false
}

};

actually means this:

var _genesys = {
buttons: {

chat: false,
cobrowse: true, // inherited default

Configuration API

API Reference 5

position: 'left' // inherited default
}

};

Disabling buttons
As seen in snippet above, you may pass the value false to disable the Co-browsing and/or the Live
chat buttons. This might be useful if you want to start chat or co-browsing from your own custom
button (or from any other element or event), using the Co-browse API or Chat API.

Providing Custom HTML for Buttons
You can also pass functions that return HTML Element to buttons.cobrowse or buttons.chat. In this
case the output of the function will be used to render the button instead of using default image.

Tip
In this case your custom button(s) will inherit the positioning of the default button(s).

Here's a simple example that makes use of jQuery library to generate HTML Elements:

function createCustomButton() {
return jQuery('<div class="myButtonWrapper"><button

class="myButton">Chat!</button></div>')[0];
}

var _genesys = {
buttons: {

chat: createCustomButton
}

};

Important
Note that is NOT mandatory to use jQuery in order to provide a custom HTML element.
The example above does return an HTML element out of a jQuery object by retrieving
the first element from jQuery collection via [0].

Localizing the Live Chat and Co-Browsing Buttons
By default the buttons are images and therefore they cannot be localized in the same way as the rest
of the interface. To localize these buttons, you can use one of the two following methods:

• Provide custom localized buttons instead of the default ones, as explained in Providing Custom HTML for
Buttons.

• Override the appearance of the buttons using CSS.

Configuration API

API Reference 6

https://enu.docs.genesys.com/Documentation/GCB/latest/Developer/CustomUIExamples

For more information about localizing Co-browse and Chat, see Localization.

Co-browse Configuration Options

Important
For reference on Chat configuration options, see startChat Options. All options
specified in _genesys.chat are internally passed to startChat() method call.

Tip
For backward compatability with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. The use of _gcb is deprecated and may
be discontinued in later versions. If you are using _gcb, we recommend that you
switch to _genesys.

The following options are configurable as properties of an object passed to _genesys.cobrowse:

debug
Default: false

Set to true to enable debugging console logs. You can enable debug logs for Co-browse only, Chat
only, or for both.

Example:

<script>
// Enable debugging logs for both Co-browse and Chat:
var _genesys = {

debug: true;
};
</script>

<script>
// Enable debugging logs only for Co-browse:
var _genesys = {

cobrowse: {
debug: true;

}
};
</script>

<script>
// Enable debugging logs only for chat:
var _genesys = {

chat: {

Configuration API

API Reference 7

https://enu.docs.genesys.com/Documentation/GCB/latest/Developer/Localization
https://enu.docs.genesys.com/Documentation/GWE/latest/API/StartChat#options

debug: true;
}

};
</script>

disableBuiltInUI
Default: false

Set to true to use a custom Co-browse UI. Use the Co-browse API to implement a custom UI.

Example:

var _genesys = {
cobrowse: {

disableBuiltInUI: true
}

};

You can still start the Co-browse session with the configuration above but the main components of
the UI such as the toolbar and notifications will be absent.

primaryMedia
Default: Built-in chat

Used to pass an object implementing an external media adapter interface. By default, the built-in
chat is used.

Example:

<script>
var myPrimaryMedia = {

initializeAsync: function(done) { /* initialize your media here and then call done() */ },
isAgentConnected: function() { /* return true or false depending on whether an agent is

connected */ },
sendCbSessionToken: function(token) { /* send the Co-browse session token to agent */ }

};
</script>

<script>
var _genesys = {

cobrowse: {
primaryMedia: myPrimaryMedia

}
};
</script>
<INSTRUMENTATION SNIPPET>

See External Media Adapter API for more details.

Warning
If Co-browse does not detect any primary media or detects that the agent is not

Configuration API

API Reference 8

connected with the primary media, Co-browse will still ask the user, "Are you on the
phone with representative?" before starting the Co-browse session.

css
Default: Server synchronization strategy, {server: true}

This option manages the CSS synchronization strategy. Additional CSS synchronization on top of DOM
synchronization allows you to replay style changes that occur when the user moves his or her mouse
over an element with a :hover style rule.

[+] Additional details
For example, if you have the following CSS, Co-browse CSS synchronization makes the underlining
visible to the agent when the consumer moves her mouse over a link, and vice versa, the underlining
will be visible to the user when the agent moves the mouse over a link:

a:hover {
text-decoration: underline;

}

Server strategy is the default and preferred setting. The server strategy setting allows the Co-
browse server to proxy every CSS resource, including inline CSS. This strategy synchronizes CSS
hover effects regardless of the domain the CSS resource is loaded from.

Example:

<script>
var _genesys = {

cobrowse: {
css: {

server: true
}

}
};
</script>

Important
If the css option is not specified, the Co-browse JavaScript application behavior is
equivalent to the configuration snippet above.

Warning
There are limitations on handling invalid CSS. This may lead to partial or complete
loss of hover synchronization. It may also cause partial failure of general style
synchronization. See Troubleshooting CSS Synchronization for details.

Configuration API

API Reference 9

https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/TestingGCB#Troubleshooting_CSS_Synchronization

maxOfflineDuration
Default: 600 (seconds)

This option specifies the time in seconds that a reference to a Co-browse session is stored after page
load. The default value is 600 seconds (10 minutes). If this period expires, the Co-browse session will
end by time out.

Important
If you modify this option, it must match the same option on the server, maxInterval
Option.

You can apply this option to both Chat and Co-browse, as in this example:

<script>
var _genesys = {

maxOfflineDuration: 300 // applied to both Chat and Co-browse
};
</script>

disableWebSockets
Default: false

Use this option if you need to disable WebSocket communication such as when your load balancer
does not support WebSockets and you do not want to wait for Co-browse to automatically switch to
another transport.

Important
Due to the highly interactive nature of Co-browse, we highly recommended you do
not disable WebSockets. We recommend that you configure your load balancers/
proxies infrastructure to support WebSockets. Disabling WebSockets may have a huge
impact on Co-browse performance.

You can apply this option to both Chat and Co-browse, as in this example:

<script>
var _genesys = {

disableWebSockets: true // applied to both Chat and Co-browse
};
</script>

Configuration API

API Reference 10

https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval
https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval

localization
Default: undefined

Use this option to localize Genesys Co-browse and/or built-in Chat. For a detailed description, see
Localization.

setDocumentDomain
Default: true

Determines if Co-browse sets the document.domain property. If set to true, Co-browse modifies the
document.domain property. If set to false, Co-browse does not modify document.domain.

Available since Co-browse JavaScript version 8.5.002.02. For your Co-browse JavaScript version, see
the VERSION property.

Important
Co-browse modifies document.domain to support cross-subdomain communication
between iframes and the topmost context. Setting setDocumentDomain to false stops
synchronization of subdomain iframes from working.

Example:

<script>
// Turn off setting document.domain:
var _genesys = {

cobrowse: {
setDocumentDomain: false

}
};
</script>

disableBackForwardCache
Default: true

Available since Co-browse 8.5.1.

By default, Co-browse disables Safari's Back/Forward cache which can stop co-browse sessions from
functioning.

Warning
Setting disableBackForwardCache to false can make Co-browse unusable in Safari

Configuration API

API Reference 11

https://enu.docs.genesys.com/Documentation/GCB/latest/Developer/Localization

when users press the back or forward browser buttons.

Example:

<script>
// Turn BackForward Cache back on:
var _genesys = {

cobrowse: {
disableBackForwardCache: false

}
};
</script>

Configuration API

API Reference 12

	API Reference
	Configuration API

