
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Configuration API

API Reference

5/7/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Configuration API
• 1.1 Accessing the Co-browse APIs
• 1.2 Disabling Co-browse
• 1.3 Configuring the Co-browse Button
• 1.4 Co-browse Configuration Options

API Reference 2



Configuration API
This API configures Co-browse and its integration with other media. It is also used to subscribe to the
main Co-browse JavaScript API.

Co-browse is configured via a global _genesys variable. To configure Co-browse, create a <script>
such as the following example and add it to your instrumentation:

<script>
var _genesys = {

cobrowse: {
/* Co-browse configuration options */

}
};
</script>
<INSTRUMENTATION_SNIPPET>

Important
Co-browse is designed to make configuration optional. If any configuration options are
not present, Co-browse will use the pre-defined default values.

Warning
_gcb has been discontinued.

Accessing the Co-browse APIs

Since the main Co-browse JavaScript file is added to the page asynchronously, you cannot instantly
access the Co-browse APIs. Instead, you must create a function that will accept the APIs as an
argument. There are two approaches to creating this function.

You can assign the function to the special property of a global configuration variable:

<script>
var _genesys = {

onReady: function(APIs) {
APIs.cobrowse // Co-browse API

}
};
</script>
<INSTRUMENTATION_SNIPPET>
// or
<script>

Configuration API

API Reference 3



var _genesys = {
cobrowse: {

onReady: function(cobrowseApi) { ... }
}

};
</script>
<INSTRUMENTATION_SNIPPET>

Alternatively, you can modify configuration to make the APIs accessible at any point in your
application through a _genesys global variable.

To do this, you must first assign an array to the onReady property:

<script>
var _genesys = {

onReady: []
};
</script>
<INSTRUMENTATION_SNIPPET>
// or
<script>
var _genesys = {

cobrowse: {
onReady: []

}
}
</script>
<INSTRUMENTATION_SNIPPET>

You can then obtain the APIs at any point in your application using the following code snippet:

_genesys.onReady.push(function(APIs) {
APIs.cobrowse // Co-browse API

});
// or
_genesys.cobrowse.onReady.push(function(cobrowseApi) { ... });

Tip
For more information on the <INSTRUMENTAITON_SNIPPET>, see Basic instrumentation.

Disabling Co-browse

You can disable Co-browse using JS instrumentation. To do that, pass the value false to the
respective configuration subsection:

<script>
var _genesys = {

cobrowse: false
};
</script>

Configuration API

API Reference 4

https://enu.docs.genesys.com/Documentation/GCB/latest/Deployment/WebsiteInstrumentation#Basic_Instrumentation


Configuring the Co-browse Button

You can hide the Co-browsing button. This might be useful if you want to start co-browsing from your
own custom button (or from any other element or event), using the Co-browse API.

<script>
var _genesys = {
buttons: {
cobrowse: false
}
};
</script>

You can change the position of the Co-browsing button:

<script>
var _genesys = {
buttons: {
position: 'right'
}
};
</script>

By default, the position is left and the button is visible.

Providing Custom HTML for Buttons
You can also pass functions that return HTML Element to buttons.cobrowse. In this case the output
of the function will be used to render the button instead of using default image.

Tip
In this case your custom button(s) will inherit the positioning of the default button(s).

Here's a simple example that makes use of jQuery library to generate HTML Elements:

function createCustomButton() {
return jQuery('<div class="myButtonWrapper"><button class="myButton">Co-

browse!</button></div>')[0];
}

var _genesys = {
buttons: {

cobrowse: createCustomButton
}

};

Important

Configuration API

API Reference 5



Note that is NOT mandatory to use jQuery in order to provide a custom HTML element.
The example above does return an HTML element out of a jQuery object by retrieving
the first element from jQuery collection via [0].

Localizing the Co-Browsing Button
By default the buttons are images and therefore they cannot be localized in the same way as the rest
of the interface. To localize these buttons, you can use one of the two following methods:

• Provide custom localized buttons instead of the default ones, as explained in Providing Custom HTML for
Buttons.

• Override the appearance of the buttons using CSS.

For more information about localizing Co-browse, see Localization.

Co-browse Configuration Options

Tip
For backward compatability with previous versions of Co-browse, the name of the
global configuration variable can also be _gcb. The use of _gcb is deprecated and may
be discontinued in later versions. If you are using _gcb, we recommend that you
switch to _genesys.

The following options are configurable as properties of an object passed to _genesys.cobrowse:

enableStaticResourceService
Default: true

Set to true to enable the Static Resources Behind Authentication feature, which will cache resources.
Setting to false disables the feature.

Example:

<script>
var _genesys = {

cobrowse: {
enableStaticResourceService: true;

}
};
</script>

Configuration API

API Reference 6

https://enu.docs.genesys.com/Documentation/GCB/latest/Developer/CustomUIExamples
https://enu.docs.genesys.com/Documentation/GCB/latest/Developer/Localization
https://enu.docs.genesys.com/Documentation/GCB/latest/Deployment/StaticResources


debug
Default: false

Set to true to enable debugging console logs. You can enable full Co-browse logs, using this
example:

<script>
var _genesys = {

debug: true;
};
</script>

Or reduced Co-browse logs, as shown below:

<script>
var _genesys = {

cobrowse: {
debug: true;

}
};
</script>

For debugging purposes, we recommend the first example. However, this example can also turn on
logging from other Genesys tools, if you are using any and if you configure them using the _genesys
variable.

disableBuiltInUI
Default: false

Set to true to use a custom Co-browse UI. Use the Co-browse API to implement a custom UI.

Example:

var _genesys = {
cobrowse: {

disableBuiltInUI: true
}

};

You can still start the Co-browse session with the configuration above but the main components of
the UI such as the toolbar and notifications will be absent.

Important
Co-browse is always trying to ensure that the customer is either on the phone or on a
chat with the agent. If Co-browse cannot automatically detect this, it asks the
customer via the UI. If you want to disable these UI dialogs before the start of a Co-
browse session, you can implement an external media adapter with the Co-browse
JavaScript External Media API.

Configuration API

API Reference 7



primaryMedia
Default: null

Used to pass an object implementing an external media adapter interface.

Example:

Configuration API

API Reference 8



<script>
var myPrimaryMedia = {

initializeAsync: function(done) { /* initialize your media here and then call done() */ },
isAgentConnected: function() { /* return true or false depending on whether an agent is connected */ },
sendCbSessionToken: function(token) { /* send the Co-browse session token to agent */ }

};
</script>

<script>
var _genesys = {

cobrowse: {
primaryMedia: myPrimaryMedia

}
};
</script>
<INSTRUMENTATION SNIPPET>

Configuration API

API Reference 9



See External Media Adapter API for more details.

Warning
If Co-browse does not detect any primary media or detects that the agent is not
connected with the primary media, Co-browse will still ask the user, "Are you on the
phone with representative?" before starting the Co-browse session.

css
Default: Server synchronization strategy, {server: true}

This option manages the CSS synchronization strategy. Additional CSS synchronization on top of DOM
synchronization allows you to replay style changes that occur when the user moves his or her mouse
over an element with a :hover style rule.

[+] Additional details
For example, if you have the following CSS, Co-browse CSS synchronization makes the underlining
visible to the agent when the consumer moves her mouse over a link, and vice versa, the underlining
will be visible to the user when the agent moves the mouse over a link:

a:hover {
text-decoration: underline;

}

Server strategy is the default and preferred setting. The server strategy setting allows the Co-
browse server to proxy every CSS resource, including inline CSS. This strategy synchronizes CSS
hover effects regardless of the domain the CSS resource is loaded from.

Example:

<script>
var _genesys = {

cobrowse: {
css: {

server: true
}

}
};
</script>

Important
If the css option is not specified, the Co-browse JavaScript application behavior is
equivalent to the configuration snippet above.

Configuration API

API Reference 10



Warning
There are limitations on handling invalid CSS. This may lead to partial or complete
loss of hover synchronization. It may also cause partial failure of general style
synchronization. See Troubleshooting CSS Synchronization for details.

maxOfflineDuration
Default: 600 (seconds)

This option specifies the time in seconds that a reference to a Co-browse session is stored after page
load. The default value is 600 seconds (10 minutes). If this period expires, the Co-browse session will
end by time out.

Important
If you modify this option, it must match the same option on the server, maxInterval
Option.

You can set this option, as shown in this example:

<script>
var _genesys = {

cobrowse: {
maxOfflineDuration: 300;

}
};
</script>

Important
Setting this option using the field of the _genesys variable (as shown below) is
deprecated. You must use the cobrowse section of _genesys variable (as shown
above).

Deprecated version:

<script>
var _genesys = {
maxOfflineDuration: 300
};
</script>

Configuration API

API Reference 11

https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/TestingGCB#Troubleshooting_CSS_Synchronization
https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval
https://enu.docs.genesys.com/Documentation/GCB/8.1.3/Deployment/cometd#maxInterval


disableWebSockets
Default: false

Use this option if you need to disable WebSocket communication such as when your load balancer
does not support WebSockets and you do not want to wait for Co-browse to automatically switch to
another transport.

Important
Due to the highly interactive nature of Co-browse, we highly recommended you do
not disable WebSockets. We recommend that you configure your load balancers/
proxies infrastructure to support WebSockets. Disabling WebSockets may have a huge
impact on Co-browse performance.

You can set this option, as shown in this example:

<script>
var _genesys = {

cobrowse: {
disableWebSockets: true;

}
};
</script>

Important
Setting this option using the field of the _genesys variable (as shown below) is
deprecated. You must use the cobrowse section of the _genesys variable (as shown
above).

Deprecated version:

<script>
var _genesys = {
disableWebSockets: true;
};
</script>

localization
Default: null

Use this option to localize Genesys Co-browse. For a detailed description, see Localization.

Configuration API

API Reference 12

https://enu.docs.genesys.com/Documentation/GCB/latest/Developer/Localization


setDocumentDomain
Default: false

Determines if Co-browse sets the document.domain property. If set to true, Co-browse modifies the
document.domain property. If set to false, Co-browse does not modify document.domain.

Available since Co-browse JavaScript version 8.5.002.02. For your Co-browse JavaScript version, see
the VERSION property.

Important
Co-browse modifies document.domain to support cross-subdomain communication
between iframes and the topmost context. Setting setDocumentDomain to false stops
synchronization of subdomain iframes from working.

Example:

<script>
// Turn on setting document.domain:
var _genesys = {

cobrowse: {
setDocumentDomain: true

}
};
</script>

disableBackForwardCache
Default: true

Available since Co-browse 8.5.1.

By default, Co-browse disables Safari's Back/Forward cache which can stop co-browse sessions from
functioning.

Warning
Setting disableBackForwardCache to false can make Co-browse unusable in Safari
when users press the back or forward browser buttons.

Example:

<script>
// Turn BackForward Cache back on:
var _genesys = {

cobrowse: {
disableBackForwardCache: false

Configuration API

API Reference 13



}
};
</script>

cookieFootprintReduce
Default: false

Set to true to enable cookie footprint reduce feature which allows to store session between page
reload and relocation into site storage instead of cookies.

Example:

<script>
var _genesys = {

cobrowse: {
cookieFootprintReduce: true

}
};
</script>

Configuration API

API Reference 14


	API Reference
	Configuration API

