
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Genesys Rules System 8.5.1

Conversation Rules Templates Guide

12/31/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Table of Contents
Conversation Rules Template Guide 3
Conversation Rules—Overview of Genesys Elements 5
Configuration Prerequisites 9
Getting Started 10
Working with Composer's Business Rule Block 11
Use Case—Frequent Caller Interceptor 25
Use Case—Contract Renewal 27
Use Case—Integrate Data and Decision-Making for Developers 29
Conditions 31
Actions 40
Working with Test Scenarios 43



Conversation Rules Template Guide
These topics describe how to use the new Conversation Rules (CR) template that ships with Genesys
Rules Authoring Tool (GRAT) 8.5.001.

The purpose of this CR template is to enable much closer integration between GRS and Context
Services blocks without having to build a new template from scratch in Composer (create a Fact
model, actions and conditions, and pass complex data structures between the Composer Business
Rules block and the rules engine and re-evaluate the returned data, and so on).

This new template does the following:

• Integrates with the appropriate UCS and Context Services blocks out of the box
• Provides useful and typical conditions and actions
• Provides common date/time-related functions that integrate with GRS business calendars (such as,

Today is a working day)
• Provides a sample rule package that implements some common use case scenarios, and these are

documented in this document along with Composer project screen shots and example projects
illustrating usage.

Important
The workflows and strategies shown in this document are from Composer. You could
equally use Genesys IRD workflows.

Both the template and the sample rule package are shipped as .xml files that can be easily imported
directly into GRAT.

Important
Release 8.5.1 contains updates and addition to the Conversation Rules template that
enable it to fully support the Test Scenarios feature of GRAT on rule packages
generated from the CR template.

Conversation Rules Template Guide

Conversation Rules Templates Guide 3



Overview

Overview
Configuration Prerequisites
Getting Started

Working with the Business Rules Block

Working with the Business Rules Block

Use Cases

Use Case: Frequent Caller Interceptor
Use Case: Contract Renewal
Use Case: Integrate Data and Decision
Making for Developers

Conditions and Actions

Conditions
Actions

Working with Test Scenarios

Working with Test Scenarios

Conversation Rules Template Guide

Conversation Rules Templates Guide 4



Conversation Rules—Overview of Genesys
Elements

Genesys Composer

Composer provides a set of function blocks that allow access to Context Services. These out-of-the
box function blocks on the workflow diagram palette allow the developer to create applications that
perform various actions, such as:

• Identify customers and update their profiles.
• Extend customer profiles with user-defined information.
• Query a customer's profile.
• Create, start, complete, and query customer services.
• Query customers' active services.
• Enter, complete, and query service states and specific tasks.
• Use a business rule block to request evaluation of business logic developed in Genesys Rules System by

business analysts, and act on the result.

Orchestration Server

Execute the orchestration application. Orchestration Server has a function in Conversation Manager
similar to the function of Universal Routing Server (URS) in Genesys voice and multimedia solutions.
One of the main differences is that it operates based on business processes developed in State Chart
XML (SCXML) rather than routing strategies written in IRL (Intelligent Routing Language, a Genesys
proprietary language).

GVP

Executes the VoiceXML applications.

SCXML applications

SCXML applications can be written directly using any XML or plain text editor, or with Genesys
Composer, an Eclipse-based development environment. They are published on an application server
such as JBoss or another Java-based application server, and are executed on Orchestration Server.

Conversation Rules—Overview of Genesys Elements

Conversation Rules Templates Guide 5



Conversation Manager/UCS

Genesys Conversation Manager takes Genesys’ core capability of routing and extends it, generalizes
it, and integrates it more tightly with other Genesys products. Rather than the call (T-Server) or the
interaction (eServices/Multimedia), Conversation Manager takes the service as the basic entity. It
orchestrates the service process across channels and over time, using dynamic data and business
rules to make decisions about operations. For example;

A bank customer calls a toll-free number inquiring about mortgage preapproval. An IVR prompts him
to enter his account number, then transfers him to an agent, who fills in an application form for him
and asks him to fax some supporting documents. After he faxes the documents, he receives an SMS
message thanking him and informing him that he will receive a response within 48 hours. The next
day he receives an e-mail congratulating him on the approval of his application.

This example involves voice, IVR, fax, SMS, and e-mail channels. Conversation Manager is able to
treat the entire sequence as a single service.

Service/State/Task Model
Conversation Manager adds to Genesys the concept of service, which may be defined as follows:

• It represents a business process, which in turn may be seen as a communication or series of
communications between a customer and an enterprise, and possibly also between various parts of the
enterprise.

• It can span multiple interactions.
• It may include interactions in various media.
• It has a temporal beginning and end.
• It may be subdivided into states, which in turn may be subdivided into tasks.

Services are composed of any number of States, and States can in turn be composed of any number
of Tasks. This three-level structure provides a flexible vocabulary by which organizations store the
history of the services that they provide to customers.

A Service may also be divided directly into tasks:

Conversation Rules—Overview of Genesys Elements

Conversation Rules Templates Guide 6



Services are defined by association to Service Types that you create as Business Attributes in the
Configuration Layer. States may be used to represent components of customer service, such as:

• Customer identification
• Assigning a service agent (automated or live)
• Service identification
• Waiting for a service agent
• Offering another service while waiting for an agent
• Offering callback
• Waiting for customer input

Services, States and Tasks exist over some application-defined lifecycle. Upon completion,
applications may specify a Disposition. For example, the offering of a new product or service might be
recorded as a State of type Offer another service. The Disposition might be set to show whether
the customer accepted or declined the offer. Information on past declined or accepted offers could
then be used to calculate the likelihood that the customer might be interested in the offer at some
point in the future.

Important
This Service Model can be used by any component that can access UCS/CS’s HTTP
interface. It is not limited to use in Conversation Manager.

Conversation Rules—Overview of Genesys Elements

Conversation Rules Templates Guide 7



Genesys Rules

Genesys Rules System provides the ability to develop, author, and evaluate business rules.

A business rule is a piece of logic defined by a business analyst. The rules in a rule package provide
a set of functionality. The Genesys Rules Authoring Tool (GRAT) allows you to create, edit, and delete
rules and rule packages.

Rule packages are bundles of rules. Rule packages are used to group, manage, and deploy rules. A
rule package contains one or more rules plus the fact model that is needed to support the rules. The
fact model is a description of the data. It contains field names and types which are grouped into
tables/classes. Facts are input/output to rule execution and are instances of the tables/classes
defined in the fact model. Rule packages also contain the rule definitions, business calendars, and
also the templates that the rule package is dependent on. You deploy rule packages individually to
the Rules Engine.

Rule packages also allow you to do the following:

• Partition rules and facts so that they are small, well-defined, and apply only to a particular application or
use. This makes them easier to debug and understand.

• Isolate rule packages from one another when executing rules. This also improves performance because
the Rules Engine has fewer candidates to examine during the evaluation.

• Update individual rule packages without affecting other deployed packages.
• Import and export an entire rule package containing the rule definitions, business calendars, and also

the templates that the rule package is dependent on.

Genesys Reporting

Run reports to determine customer trends.

Conversation Rules—Overview of Genesys Elements

Conversation Rules Templates Guide 8



Configuration Prerequisites

Genesys Composer

The Conversation Rules template requires Genesys Composer release 8.1.300.89 at minimum.

Configuration Options

The following configuration options must be set in order to use the Conversation Rules template:

Genesys Rules Engine

• json-hierarchical-driver = true

Genesys Rules Authoring Tool
These options control how GRAT connects to the Context Services REST API.

• context-services-rest-api-protocol—http or https
• context-services-rest-api-host—Host name
• context-services-rest-api-port—Port number
• context-services-rest-api-base-path—The base path

Contact Server

• map-names = true

When a rule package is deployed and map-name is set to true, the business attribute name is
encoded in the rule package. With value false, the DBID is encoded in the rule package.

If the map-name option is changed on UCS at any time from rule authoring to deployment to actual
operation, existing rule packages based on the Conversation Manager template must be redeployed.

Configuration Prerequisites

Conversation Rules Templates Guide 9



Getting Started

Importing the CM Template and Sample Rules Package

1. Install GRS as described in the GRS Deployment Guide (opens a new document).
2. Log into GRAT.
3. Navigate to the required solution in the left navigation pane.
4. Click the Import Templates button.
5. Browse to the template file—cm_template.xml—which will be in the Examples folder in the default

installation directory unless you specified another location when you installed it. Click Import.
6. A prompt indicates whether or not the import succeeded. When the import is complete, you will see on

the Import Template dialog a new template called CM_Standard_Rules.
7. From the CM Examples Solution folder, browse to the CM Sample Package file —cm_sample.xml. Click

Import.
8. Give the sample rules package a suitable Package Name and Business Name for your purposes. See

also importing a rules package.

The template is now available for selection when you create a rules package, and the sample rules
package is available to work with.

You now have available, via the drop-down menus in GRAT, a fully defined set of ready-made
Conversation Manager-specific Conditions and Actions. Full detailed listings of these are provided in
Conditions and Actions.

Getting Started

Conversation Rules Templates Guide 10

https://docs.genesys.com/Documentation/GRS/8.5.1/Deployment/Welcome


Working with Composer's Business Rule
Block

Summary

Once the Rule Packages (created from Rule Templates) that you want to work with are deployed to
the Genesys Rules Engine, you can use the Business Rule block on the Server Side palette to create
voice and routing applications that use business rules.

Use this block to have Composer query the Genesys Rules Authoring Tool (GRAT) for deployed
packages. For the Rule Package that you specify, Composer will query the GRAT for the Facts
associated with the Rule Package. You can then set values for the Facts, call the Genesys Rules
Engine for evaluation, and save the results in a variable.

Simple Workflow

In this typical workflow:

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 11



1. The Identify Customer block is used to identify the customer based on certain search criteria, such as
ANI.

2. The Query Customer block is used to pull out the customer profile data.
3. The Query Services block is called to pull any related services for this customer.
4. The Query States block is called to pull the states related to a particular service.
5. The Query Task block is called to pull the tasks associated with a particular service or state.
6. The Business Rule block may be placed anywhere in the workflow/callflow, assuming the data needed

for the rules called by the Business Rule block have already been fetched.
7. The Assign block enables the workflow to access all the different decisions of the CM rule package. The

decision(s) requested by the Business Rule block and made by the Rules Engine are returned to the
workflow/callflow which carries them out. The GRS does not actually execute the decisions (e.g. update
the customer profile, transfer to agent, an so on).

User Variables in the Workflow

In this example workflow, the following user variables have been defined to retrieve data necessary
for, as well as demonstrate the various decisions made by, the CM rules.

Variable Name Default Value Expected Type Description

customer undefined JSON object
Customer profile data as
returned by Query
Customer block.

services undefined JSON array
Services of the
customer as returned by
Query Services block.

states undefined JSON array
States of a particular
service as returned by
Query States block.

tasks undefined JSON array

Tasks of a particular
service or state as
returned by Query Tasks
block. (In Context
Services, Tasks may be
associated with service
or state.)

contractEndDate undefined String
Contract end date
timestamp string in the
format of
2014-07-14T13:23:35.392Z.

mediaType undefined String Media type of the
current interaction.

businessRulesResultObject undefined JSON object Output of Business
Rules block.

customerID undefined String
ID of the customer as
returned by Identify
Customer block.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 12



Variable Name Default Value Expected Type Description

serviceID undefined String
ID of a service of the
customer to use in
Query States and Query
Tasks blocks.

stateID undefined String

ID of a state of a service
of the customer to use
in Query Task block.
(Not used when
querying tasks
associated with
service.)

cmResults undefined JSON object
Results from CM rules.
This is extracted from
businessRulesResultObject
for easier access.

updatedFields undefined JSON object

CM Rules decision:
Customer profile fields
to update. Each key-
value pair of this object
correspond to a contact
attribute. This is
extracted from
cmResults for easier
access later in the
workflow.

offerServiceResumption false Boolean

CM Rules decision:
Whether to offer service
resumption to customer.
This is extracted from
cmResults for easier
access later in the
workflow.

offerSurvey false Boolean

CM Rules decision:
Whether to offer survey
to customer. This is
extracted from
cmResults for easier
access later in the
workflow.

blockCommunication false Boolean

CM Rules decision:
Whether to block further
communication to
customer. This is
extracted from
cmResults for easier
access later in the
workflow.

sendCommunication undefined String

CM Rules decision:
Which media type to
use for further
communication with
customer. This is

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 13



Variable Name Default Value Expected Type Description
extracted from
cmResults for easier
access later in the
workflow.

requestedAgent undefined String

CM Rules decision:
Which particular agent
to route this customer
to. This is extracted
from cmResults for
easier access later in
the workflow.

requestedAgentGroup undefined String

CM Rules decision:
Which agent group to
route this customer to.
This is extracted from
cmResults for easier
access later in the
workflow.

requestedPlaceGroup undefined String

CM Rules decision:
Which place group to
route this customer to.
This is extracted from
cmResults for easier
access later in the
workflow.

requestedSkill undefined String

CM Rules decision:
Which skill to route this
customer to. This is
extracted from
cmResults for easier
access later in the
workflow.

Query Customer Block

This is the Query Customer block. Note the Output: Result is stored in the user variable customer.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 14



Query Services Block

The following is the Query Services block.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 15



Notes:

• The result Output—Service Data is stored in user variable services.
• Query Criteria—Identifier is set to customerID, meaning we are querying services of the identified

customer.
• Query Criteria—Service Status is set to All to ensure both conditions for active services and

completed services can be correctly checked.
• Query Criteria—Service Type is not set, ensuring services of all service types are returned for service

type-related rule conditions.
• No Query Date Range is set, which is needed for date checking service conditions.

Query States Block

The following is the Query States block.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 16



Notes:

• The result Output—States Data is stored in user variable states.
• Query Criteria—Service ID is set to serviceID, which should be previously extracted from Query

Services results.
• Query Criteria—State Status is set to All to ensure both conditions for active states and completed

states can be correctly checked.
• Query Criteria—State Types is not set, ensuring states of all state types are returned for state type-

related rule conditions.
• Since Query States may only fetch states of a single service, the current CM template expects all states

supplied are associated with a single service. If states of multiple services are aggregated to a CM rule
package, the rules may not behave as expected.

Query Tasks Block

The following is the Query Tasks block.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 17



Notes:

• The result Output—Task Data is stored in user variable tasks.
• Query Criteria—Service ID is set to serviceID, which should be previously extracted from Query

Services results.
• Query Criteria—State ID is set to stateID, which should be previously extracted from Query States

results. This field may be omitted when querying tasks associated with a service.
• Query Criteria—Task Status is set to All to ensure both conditions for active tasks and completed

tasks can be correctly checked.
• Query Criteria—Task Types is not set, ensuring tasks of all task types are returned for task type-related

rule conditions.
• Since Query Tasks may only fetch tasks of a single service or state, the current CM template expects

all tasks supplied are associated with a single service or state. If tasks of multiple services/states are
aggregated to a CM rule package, the rules may not behave as expected.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 18



Business Rules Block

Notes:

• The Business Rule block is where GRS is invoked in the workflow/callflow. Before configuring this
block, a rule package using the CM template should already be authored and deployed to GRE.

• Business Rule Package is the name of the rule package. This is chosen from a list of all deployed rule
packages on the GRE specified in Windows -> Preferences.

• Output Result is copied to user variable businessRulesResultObject.
• Facts brings up a list of all facts to send to GRE. See below for further detail.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 19



Facts
_GRS_Environment

The _GRS_Environment fact class is available to rules packages of all types, this fact class is for
storing global environment variables.

com.genesys.brs.api.RulesResults

Fact class com.genesys.brs.api.RulesResults is a placeholder for storing results from GRE. It is
required for CM rule packages. No value should be set for the data field.

com.genesyslab.brs.api.CustomerProfile

Fact class com.genesyslab.brs.api.CustomerProfile provides the customer profile from Query
Customer block to GRE. It is required only if customer-related conditions are used; otherwise it is
ignored. If it is not provided, all customer-related conditions are considered failed.

In this example, the value of jSONObject is set to the user variable customer, which was previously

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 20



populated by Query Customer block.

com.genesyslab.brs.api.Services

Fact class com.genesyslab.brs.api.Services provides services from Query Services block to
GRE. It is only required if service-related conditions are used; otherwise it is ignored. If it is not
provided, all service-related conditions are considered failed.

In this example, the services field is set to the user variable services, which was previously populated
by Query Services block.

com.genesyslab.brs.api.States

Fact class com.genesyslab.brs.api.States provides the states from Query States block to GRE. It
is required only if state-related conditions are used; otherwise it is ignored. If it is not provided, all
state-related conditions are considered failed. In this example, the states field is set to the user
variable states, which was previously populated by Query States block.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 21



com.genesyslab.brs.api.Tasks

Fact class com.genesyslab.brs.api.Tasks provides the states from Query Tasks block to GRE. It is
required only if task-related conditions are used; otherwise it is ignored. If it is not provided, all task-
related conditions are considered failed. In this example, the tasks field is set to the user variable
tasks, which was previously populated by Query Tasks block.

Interaction

Fact class Interaction provides the media type of the current interaction to GRE. It is required only
if media type-related conditions are used; otherwise it is ignored. If it is not provided, all media type-
related conditions are considered failed. In this example, the mediaType field is set to the user
variable mediaType, which is not actually populated in previous blocks in the current workflow. In
normal usage, the user variable for providing media type to this fact should either be pre-populated
in a previous block, or hard-coded based on the workflow (for example, if this workflow is only
executed for voice).

Contract

Fact class Contract provides the contract end date of the user to GRE. It is only required if contract-
related conditions are used; otherwise it is ignored. If it is not provided, all contract-related conditions
are considered failed.

In this example, the contractEndDate field is set to the user variable contractEndDate, which is not
actually populated in previous blocks in the current workflow. In normal usage, the user variable for
providing contract end date to this fact should should be pre-populated in a previous block (for
example, calculated based on service start date and pre-configured contract length, fetched from
external services).

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 22



ECMA Script Block

The purpose of this ECMA Script block is to extract the decisions/recommendations of the CM rule
package from businessRulesResultObject (output of Business Rule block) into the user variable
cmResults. It is not absolutely necessary, but as businessRulesResultObject contains all the input
to the Business Rule block, and actual results of the CM rule package are buried in deep.

Assign Block

The purpose of this block is to demonstrate how to access all the different decisions of the CM rule
package. Notice all results are in the rule_results field of cmResults, and the updated_fields field
of cmResults stores any customer profile updates.

In this example, the Boolean values are assigned either true or false even if the rule package did not
make any decision. If the "=== true" part is removed, the value would be undefined if no decision
was made by the rule package one way or another, which, depending on the situation, could be a
valid branch for a Branching block.

Working with Composer's Business Rule Block

Conversation Rules Templates Guide 23



Working with Composer's Business Rule Block

Conversation Rules Templates Guide 24



Use Case—Frequent Caller Interceptor

Scenario

Jane is a Contact Center Manager. She is responsible for achieving a First Call Resolution rate of X%.
In order to accomplish that, Jane needs to:

• Know what the current First Call Resolution Rate is.
• Be able to make changes that will positively impact the rate.

Solution

The proposed Genesys solution is to implement the Conversation Manager Use Case for Frequent
Caller Interceptor. This use case will provide a rules package (in GRS) that:

1. Call the IVR to check whether the calling customer has previously called within a specified timeframe;
and, if so;

2. Check for a good probability that this call is for the same reason.

The solution will allow Jane to determine what treatment to provide to customers that meet these
conditions, such as Route to Supervisor, Route to Proactive Survey, or to send a specialized,
focused Survey at the end of the interaction to find out why the customers had to call back more
than once to resolve their issue. Conversation Manager Reports will keep Jane aware of her progress
to increase First Call Resolutions.

Creating the Rule in GRAT—Linear Rule Example

Use Case—Frequent Caller Interceptor

Conversation Rules Templates Guide 25



Narrative
This linear rule is Frequent Caller Interceptor. This is a simpler rule testing only one condition and
action.

When the condition "Customer has had 3 services completed within the last 2 weeks" evaluates as
true, then they are routed to the Customer Care skill group and are offered a survey.

Creating the Rule in GRAT—Decision Table Example

Narrative
This decision table is Frequent Caller Interceptor. It is more complex and has three potential
outcomes. It consists of a table of 3 decision table rows: DTR-107, DTR-108 and DTR-109.

• In DTR-107, if the condition "Customer has had 1 BlueSky Check-in service within the last 2 days"
evaluates true the customer is routed to the Regular Agents agent group. If not, DTR-108 is
evaluated.

• In DTR-108, if the condition "Customer has had 3 BlueSky Book Flight services within 1 week" evaluates
true, the customer is routed to the Proactive Survey agent group. If not DTR-109 is evaluated.

• In DTR-109, if the condition "Customer has had 5 of any BlueSky service within 3 months" evaluates
true, the customer is routed to the Supervisors agent group. If not, the customer does not meet the
Frequent Caller conditions described in the table.

Use Case—Frequent Caller Interceptor

Conversation Rules Templates Guide 26



Use Case—Contract Renewal

Scenario

Mobile Operator X is the leading mobile phone services provider in their region. However, recently,
more competitors have entered the market and are starting to take customers away. The reasons:

• Newer devices.
• Better pricing.
• Customer satisfaction.

The Conversation Manager Contract Renewal application can be used to mitigate loss of customers to
these issues, as much as possible. The Mobile company has a new line of devices and special rate
plans to existing customers that may churn. Implementing this application to recognize the
customers that have:

• A contract end date of Y days/weeks/months away.
• A specific device.
• Eligibility for the new rate plans.

will enable a special group of agents skilled in "Customer Saves" to know who the customer is, what
plan and device they have, know that they are close to contract end, and what offers they can
provide to ensure continuity of service and revenue.

A standard set of rules comes with the solution and the Mobile operator needs to make only minimal
changes to start using the solution immediately. Conversation Manager Reports show the number of
customers identified as Contract Renewal candidates, the treatment provided, and the effectiveness
of renewals.

Creating the Rule

Narrative
This is linear rule Contract Renewal.

Use Case—Contract Renewal

Conversation Rules Templates Guide 27



When the "Contract end date will expire within 3 months" condition evaluates true, the customer is
routed to the Customer Care skill group.

Technical Detail

In order to implement this use case, the customer will have to fetch their Contract End Date from
their business's back-end database. They can do this using Orchestration Server via Composer's
Database, Web Service and other blocks. The Contract End Date can be passed into the rules block
in our pre-defined Fact called Contract. This enables the condition:

Contract end date is within "{time}" "{timePeriod}"

Use Case—Contract Renewal

Conversation Rules Templates Guide 28



Use Case—Integrate Data and Decision-
Making for Developers

Scenario

A developer who is responsible for ensuring that data and decisions are shared across customer
communication channels, needs to perform two or three series of data manipulation in his application
in order to move customer information from Context Services, to the Rules System, to the
application, and back to Context Services. Digital channels need to have a single approach to
handling cross-channel data and central decisions with regard to data handling.

Solution

We can use GRAT to create a decision table checking for various combinations of customer segment,
media type, and active services.

Creating the Rule

Narrative
This is decision table Integrate Data and Decision Making with 5 rows; DTR-120, to DTR-124. The
wildcard values indicate a parameter which is diregarded for evaluation purposes.

• In DTR-120 if the "Customer is Gold and contacts via chat and has an active service type of BlueSky
Book Flight" condition evaluates true, then route them to the Sales skill group. If not, evaluate
DTR-121.

• In DTR-121, if the "Customer is Gold and contacts via email and has an active service type of BlueSky
Book Flight" condition evaluates true, then route them to the Internet skill group. If not, evaluate
DTR-122.

Use Case—Integrate Data and Decision-Making for Developers

Conversation Rules Templates Guide 29



• In DTR-122, if the "Customer is Gold and contacts via voice and has an active service type of BlueSky
Book Flight" condition evaluates true, then route them to the Phone skill group. If not, evaluate
DTR-123.

• In DTR-123, if the "Customer is Gold and contacts via any channel and has an active service type of
BlueSky CheckIn" condition evaluates true, then route them to the Service skill group. If not,
evaluate DTR-124.

• In DTR-124, if the "Customer is of any type and contacts via any channel and has any active service "
condition evaluates true, then route them to the Support skill group.

Use Case—Integrate Data and Decision-Making for Developers

Conversation Rules Templates Guide 30



Conditions
Condition Example Usage Parameters Description

Time Sensitive

Today is a
work day

Today is a
work day N/A

To use this condition, a
business calendar must
be associated with the
rule. Based on the
definition of the
business calendar, this
condition evaluates true
if the current day is a
"work day". See
changes to Business
Calendars in GRAT
8.5.001.21 (Best
Practice/User Guide).

It is currently
during business hours

It is currently
during business hours N/A

To use this condition, a
business calendar must
be associated with the
rule. Based on the
definition of the
business calendar, this
condition evaluates true
if the current time is
during business hours
(without regard to the
day). See changes to
Business Calendars in
GRAT 8.5.001.21 (Best
Practice/User Guide).

Today is a work
day and it is
currently during
business hours

Today is a work
day and it is
currently during
business hours

N/A

To use this condition, a
business calendar must
be associated with the
rule. Based on the
definition of the
business calendar, this
condition evaluates true
if the current day and
time are on a business
day and during business
hours. See changes to
Business Calendars in
GRAT 8.5.001.21 (Best
Practice/User Guide).

Media-Related

Media type is
"{mediaType}"

Media type is "voice"
Media type is "chat" Media
type is "email"

mediaType

• fetched from
Business Attributes

To use this condition,
the media type needs to
be passed in a separate
fact field, as this value
is not passed in on the

Conditions

Conversation Rules Templates Guide 31



Condition Example Usage Parameters Description

-> Media Type

standard JSON structure
from a Query Customer
Profile block. The media
type can be extracted
from the interaction.

Customer-Related
Usage Notes: To use the following customer-related conditions, the Composer application
must use the Query Customer Profile block to retrieve details about the customer, and the

result of Query Customer Profile must be assigned to the CustomerProfile fact.

Customer
"{contactAttribute}"
"{stringOperator}"
"{stringValue}"

• Customer Last Name
starts with Sh

• Customer Zip Code
equals 27613

• Customer Country is
Canada

contactAttribute

• fetched from
Business Attributes
-> Contact
Attributes

stringOperator

• contains
• ends with
• equal to
• equal to ignore case
• starts with
stringValue

• any string

The rule author can
choose any of the
defined string fields
from the drop-down list.
This list is populated
from Configuration
Server, so will contain
any new fields added for
the solution. The rule
author can choose any
of the operators from a
drop-down list, and will
then type in a value to
compare against.
The rule author can negate
any of the conditions by using
the not operator in GRAT, and
can group related conditions
together using the grouping
feature.

The Composer application can
pass in the result from Query
Customer or Identify Customer
blocks as a single variable to
the rule. This condition will
extract the field from the input
variable and compare it to the
stringValue using the
operator specified in
stringOperator.

Customer (numeric)
"{contactAttribute}"
"{operator}"
"{numericValue}"

Customer (numeric)
"age" is greater than 50
Customer (numeric) "credit
score" is less than 500
Customer (numeric) "weight"
is less than or equal to 150

contactAttribute

• fetched from
Business Attributes
-> Contact
Attributes

operator

• not equal to
• equal to
• greater than
• greater than or equal

The rule author can
choose any of the
defined string fields"
from the drop-down list.
This list is populated
from Configuration
Server, so will contain
any new fields added for
the solution. The rule
author can choose any
of the operators from a
drop-down list, and will
then type in a value to
compare against.

Conditions

Conversation Rules Templates Guide 32



Condition Example Usage Parameters Description

to
• less than
• less than or equal to
numericValue

• any number

The Composer application can
pass in the result from Query
Customer or Identify Customer
blocks as a single variable to
the rule. This condition will
extract the field from the input
variable and compare it to the
intValue using the operator
specified in operator.

Customer segment is
"{customerSegment}"

Customer segment is
"Gold"

customerSegment

• Fetched from
Business Attributes
->
CustomerSegment

The rule author can
choose any of the
defined segments from
the drop-down list. This
list is populated from
Configuration Server, so
will contain any new
fields added for the
solution.

Service-Related
Usage Notes To use the following Service-Related conditions, the Composer application must:
1) Use the “Query Services” block for all services associated with the customer: a)Identifier =
customer ID. b)Service Status = all c) Service Type (unset). 2) Populate the result of “Query

Services” into “Services” fact
Note: Certain conditions may not require querying all service status and/or all service types. However, querying all

services provide the most flexibility in rules authoring should the business decision changes.

Customer has at least
one active service

Customer has at least
one active service

If the customer has at
least one service that is
active, this condition
evaluates true.

Customer has at least
one active service of
type “{serviceType}”

Customer has at least
one active service of
type "Reservation"
Customer has at least
one active service of
type "Merchandise Return"

serviceType

• Fetched from
Business Attributes
->
ContextManagementService

If the customer has at
least one active service
of the type specified,
the condition evaluates
true.

Customer has at least
one service of type
“{serviceType}” that
has completed.

Customer has at least
one service of type
"Reservation" that has
completed.
Customer has at least
one service of type
"Merchandise Return" that
has completed.

serviceType

• Fetched from
Business Attributes
->
ContextManagementService

If the customer has at
least one service of the
type specified that is in
completed state, the
condition evaluates
true.

Customer has at least
{numberOfServices}
services
currently active and
started
within {time}

Customer has at least
3 services currently
active
and started within 1
week

numberOfServices -
integer value > 0
time - integer > 0

timeUnit

If the customer has at
least the specified
number of services
currently active, that
were all started within
the time specified, the

Conditions

Conversation Rules Templates Guide 33



Condition Example Usage Parameters Description

“{timeUnit}”
Customer has at least
2 services currently active
and started within 24 hours

• hours
• days
• weeks
• months

condition evaluates
true.

Customer has at least
{numberOfServices}
services that
completed within the
last {time}
“{timeUnit}”

Customer has at least
3 services that
completed
within the last
2 weeks
Customer has at least 2
services that completed within
the last 5 days

numberOfServices -
integer value > 0

time - integer > 0

timeUnit

• hours
• days
• weeks
• months

If the customer has at
least the specified
number of services that
all completed within the
time specified, the
condition evaluates
true.

Customer has at least
{numberOfServices}
services of type
“{serviceType}”
currently active and
started within {time}
“{timeUnit}”

Customer has at least 3
services of type
“Reservation" currently
active and started
within 1 month
Customer has at least 2
services of type "Product
Defect" currently active and
started within 3 days.
Customer has at least 2
services of type "Complaints"
currently active and started
within 90 days

numberOfServices -
integer value > 0
serviceType

• Fetched from
Business Attributes
->
ContextManagementService

time - integer > 0

timeUnit

• hours
• days
• weeks
• months

If the customer has the
specified number of
services, of the given
type, currently active
and all started within
the time specified, the
condition evaluates
true.

Customer has at least
{numberOfServices}
services of type
“{serviceType}”
completed within the
last {time}
“{timeUnit}”

Customer has at least 2
services of type
"Airline Reservation"
completed within the
last 2 months
Customer has at least 5
services of type "Complaint"
completed within the last 180
days

numberOfServices -
integer value > 0

serviceType

• Fetched from
Business Attributes
->
ContextManagementService

time - integer > 0

timeUnit

If the customer has the
specified number of
services, of the given
type, that all completed
within the time
specified, the condition
evaluates true.

Conditions

Conversation Rules Templates Guide 34



Condition Example Usage Parameters Description

• hours
• days
• weeks
• months

Customer had last
completed
"{serviceType}"
service occur within
{time} "{timeUnit}"

Customer had last
completed "Complaint"
service occur within 7
days
Customer had last completed
"Reservation" service occur
within 1 month

serviceType

• Fetched from
Business Attributes
->
ContextManagementService

time - integer > 0

timeUnit

• hours
• days
• weeks
• months

If the customer's last
completed service
occurred on or before
the time specified, the
condition evaluates
true.

The number of active
services associated with
this customer is
"{operator}"{numberOfServices}

The number of active
services associated with
this customer is greater
than 5
The number of active services
associated with this customer
is less than 3

operator

• not equal to
• equal to
• greater than
• greater than or equal

to
• less than
• less than or equal to
numberOfServices integer
>= 0

If the number of active
services associated with
this customer matches
the condition specified
(eg, "greater than 5",
"equal to 10"), the
condition evaluates
true.

The number of
completed services
associated with this
customer is
“{operator}”
{numberOfServices}.

The number of
completed services
associated with this
customer is greater
than 5.
The number of completed
services associated with this
customer is less than 3.

operator

• not equal to
• equal to
• greater than
• greater than or equal

to
• less than
• less than or equal to

If the number of
completed services
associated with this
customer matches the
condition specified (eg,
"greater than 5", "equal
to 10"), the condition
evaluates true.

Conditions

Conversation Rules Templates Guide 35



Condition Example Usage Parameters Description

numberOfServices integer
>= 0

The total number of
services associated with
this customer is
“{operator}”
{numberOfServices}

The total number of
services associated with
this customer is less
than 3

operator

• not equal to
• to
• greater than
• greater than or equal

to
• less than
• less than or equal to
numberOfServices integer
>= 0

If the number services
(active or completed)
associated with this
customer matches the
condition specified (eg,
"greater than 5", "equal
to 10"), the condition
evaluates true.

State-Related
Usage Notes: To use the following State-Related conditions, the Composer application must:
1) Use the “Query States” block for all services associated with the service: a) Service ID =

service in question; b)State Status = all; c) State Type (unset); 2)
Populate the result of “Query States” into “States" fact of Rule Block.

Note: Certain conditions do not require querying all state statuses and/or all state types. However, querying all
states provides the most flexibility in rules authoring should the business decision changes.

Service is currently in
"{state}" state.

Service is currently in
"Offering Callback"
state
Service is currently in
"Collection" state

stateType

• Fetched from
Business Attributes
->
ContextManagementState

This condition will
examine the active
state related to the
Service object and
compare it to the
selected value. If it
matches, the condition
will evaluate true.
Example: Service "Travel
Reservation" could have
states Query Airfares
(completed) Reserve flights
(completed) Make payment
(active)

The following condition would
evaluate true: Service is
currently in "Make payment"
state.

Service has completed
state "{state}" within
{time} "{timeUnit}"

Service has completed
state "Delivering
Callback" within 5 days.
Service has completed state
"Payment" within 24 hours

stateType

• Fetched from
Business Attributes
->
ContextManagementState

This condition will
examine the list of
"states" that are
provided in the Service
object. If there is at
least one state of the
specified "type" that has
completed within the

Conditions

Conversation Rules Templates Guide 36



Condition Example Usage Parameters Description

time - integer > 0

timeUnit

• hours
• days
• weeks
• months

specified time range, it
will evaluate true.

Service has been in
"{state}" state for at
least {time}
"{timeUnit}"

Service has been in
"Pending Payment"
state for at least 1
week.
Service has been in "Confirm
Reservation" state for at
least 24 hours

stateType

• Fetched from
Business Attributes
->
ContextManagementState

time - integer > 0

timeUnit

• hours
• days
• weeks
• months

This condition will
examine the list of
"states" that are
provided in the Service
object. If the specified
state type has been
active for at least the
specified time range, it
will evaluate true.

Task-Related
"Usage Notes: To use the following Task-Related conditions, the Composer application must:

1) Use the Query Tasks block for all tasks associated with the service/state - this means
a)Service ID = service in question: b)State ID = state in question, if tasks are associated
with state; c) Task Status = all; d) Task Type (unset); 2)Populate the result of Query Tasks

into “Tasks" fact of the Rule Block.
Note: Certain conditions do not require querying all task statuses and/or all task types. However, querying all tasks

provides the most flexibility in rules authoring should the business decision change.

Task "{task}" is active
Task "Make Payment" is
active
Task "Pay Taxes" is active

taskType

• Fetched from
Business Attributes
->
ContextManagementTask

This condition will
examine the list of
active "tasks" that are
provided in the State
object. If there is an
active task of the
specified "type", then
the condition will
evaluate true.

Task "{task}" has been
completed

Task "Make Payment"
has been completed
Task "Pay Taxes" has been
completed

taskType

• Fetched from
Business Attributes
->
ContextManagementTask

This condition will
examine the list of
completed "tasks" that
are provided in the
State object. If there is a
completed task of the
specified "type", then

Conditions

Conversation Rules Templates Guide 37



Condition Example Usage Parameters Description
the condition will
evaluate true.

Task "{task}" has been
completed within
{time} "{timeUnit}"

Task "Call Customer"
has been completed
within 1 day
Task "Process Payment" has
been completed within 1 week

taskType

• Fetched from
Business Attributes
->
ContextManagementTask

time - integer > 0

timeUnit

• hours
• days
• weeks
• months

This condition will
examine the list of
completed "tasks" that
are provided in the
State object. If there is a
completed task of the
specified "type" that
completed within the
specified time range, it
will evaluate true.

Task "{task}" has been
active for at least
{time} "{timeUnit}"

Task "Call Customer"
has been active for at
least 8 hours
Task "Mail check" has been
active for at least 6 months

taskType

• Fetched from
Business Attributes
->
ContextManagementTask

time - integer > 0

timeUnit

• hours
• days
• weeks
• months

This condition will
examine the list of
"tasks" that are
provided in the State
object. If there is at
least one task of the
specified "type" that has
been active for at least
the specified time
range, it will evaluate
true.

Miscellaneous
Usage Notes: The concept of a "Contract" is abstract and will vary for different customers
using the CM Templates. If the user wants to test for contract expiration, they can retrieve

the actual contract via the Orchestration application (for example, database fetch, web
services, and so on) and then pass in the end date in the "Contract" fact. This allows the rule

author to test the end date and integrate this condition in with others (Customer, Service,
State, Task related).

Contract will expire
within {time}
"{timeUnit}"

Contract will expire
within 7 days
Contract will expire within 3
months

time - integer > 0
timeUnit

• hours
• days
• weeks
• months

"Contract" will have to
be defined as a
separate fact. The
customer will have to
map their actual
contract object end date
(obtained from their
back-end databases
using Orchestration or
other techniques) to the

Conditions

Conversation Rules Templates Guide 38



Condition Example Usage Parameters Description
Contract fact and pass it
in. We can then
examine the end date
passed in and
determine if it is within
the range specified.

Conditions

Conversation Rules Templates Guide 39



Actions
Action Example Usage Parameters Description

Update Customer Profile
"{contactAttribute}"
to "{stringValue}"

Update Customer Profile
"City" to "Raleigh"
Update Customer Profile
"Country" to "USA"

contactAttribute

• fetched from
Business Attributes
-> Contact
Attributes

stringValue

• any string

Allows rule to pass back
a new value for one or
more Customer Profile
fields to the invoking
application. The
invoking application
perform the update
using "Update Customer
Profile".
The updated fields are
returned in the following
structure:

"rule_results" : {
"updated_fields" : "[
"City", "Raleigh",
"Country", "USA"]
}

Update Customer Profile
(numeric)
"{contactAttribute}"
to {numericValue}

Update Customer Profile
(numeric) "age" to 55
Update Customer Profile
(numeric) "credit score" to
500

contactAttribute

• fetched from
Business Attributes
-> Contact
Attributes

numericValue

• any number

Allows rule to pass back
a new value for one or
more Customer Profile
fields to the invoking
application. The
invoking application
perform the update
using Update Customer
Profile. The updated
fields are returned in
the following structure:
"rule_results" : {
"updated_fields" : "[
"age", 55,
"credit score", 500]
}

Request specific agent
"{agent}"

Request specific agent
"Fred Flintstone"
Request specific agent "Betty
Rubble"

agent

• List of agents
fetched from
Configuration Server

Allows rule to pass back
a specific agent to the
invoking application for
processing. The
requested agent is
returned in the following
structure:
"rule_results" : {
"requested_agent",
"Betty Rubble }

Request agent group Request agent group agentGroup Allows rule to pass back

Actions

Conversation Rules Templates Guide 40



Action Example Usage Parameters Description

"{agentGroup}"
"Customer Retention"
Request agent group "Widget
Service"

• List of agent groups
fetched from
Configuration Server

a specific agent group
to the invoking
application for
processing. The
requested agent group
is returned in the
following structure:
"rule_results" : {
"requested_agent_group",
"Customer Retention"
}

Request place group
"{placeGroup}"

Request place group
"Widget Sales"
Request place group "San
Francisco Office"

placeGroup

• List of place groups
fetched from
Configuration Server

Allows rule to pass back
a specific place group to
the invoking application
for processing. The
requested place group
is returned in the
following structure:
"rule_results" : {
"requested_place_group",
"Widget Sales" }

Request skill "{skill}"
Request skill "Spanish"
Request skill "Installations"

skill

• List of skills fetched
from Configuration
Server

Allows rule to pass back
a specifically requested
skill to the invoking
application for
processing. The
requested skill is
returned in the following
structure:
"rule_results" : {
"requested_skill",
"Spanish" }

Send communication to
customer via
"{mediaType}"

Send communication to
customer via "Email"
Send communication to
customer via "Voice"

Allows rule to pass back
an indication that
further communication
with the customer is
permissible. The result
is returned in the
following structure:
"rule_results" : {
"send_communication",
"Email" }

Block communication to
customer

Block communication to
customer

Allows rule to pass back
an indication that
further communication
with the customer
should be blocked. The
result is returned in the

Actions

Conversation Rules Templates Guide 41



Action Example Usage Parameters Description
following structure:
"rule_results" : {
"block_communication",
"true" }

Offer Service
Resumption
{offerToResume}

Offer Service
Resumption "true"
Offer Service Resumption
"false"

Note: The GUI will render a
"checkbox" which can be
checked or unchecked by the
user

offerToResume

• boolean value

Allows rule to pass back
an indication that the
customer should be
offered an option to
resume an open/existing
service or not.
"rule_results" : {
"offer_resumption",
"true" }

or...

"rule_results" : {
"offer_resumption",
"false" }

Offer Survey to
Customer
{offerToSurvey}

Offer Survey to
Customer "true"
Offer Survey to Customer
"false"

Note: The GUI will render a
"checkbox" which can be
checked or unchecked by the
user

offerToSurvey

• boolean value

Allows rule to pass back
an indication that the
customer should be
offered a survey or not.
"rule_results" : {
"offer_survey",
"true" }

or...

"rule_results" : {
"offer_survey",
"false" }

<disqus> </disqus>

Actions

Conversation Rules Templates Guide 42



Working with Test Scenarios
In the initial 8.5.001 release of GRS, the Test Scenario feature did not support rules that were created
using the Conversation Manager (CM) template. This is because the Test Scenario feature in release
8.5.001 works by taking the input data (a set of one or more facts with different fields) that is
configured by the user and building the appropriate Fact model, then running the rules under GRAT
using that set of data. In release 8.5.1, the Test Scenario feature now supports rules based on the CM
template.

Data Structure in CM

With Conversation Manager, the data is in a hierarchical JSON format of Customer -> Service ->
State -> Task. Any given Customer may have one or more Services. Each Service may be in at
most one State at a time. Each State may have one or more Tasks. Tasks may also be associated
directly with Services.

So the Customer, Services, States and Tasks Facts have now been added the lists of Facts that can
be defined as Given fields, and the RulesResults Fact has been added to the list of Facts that can
be defined as an Expectation.

Important
The current CM Template is only interested in the Type, Start Time, and Completion

Working with Test Scenarios

Conversation Rules Templates Guide 43



Time (if any) of Services, States, and Tasks.

Each of the new values is represented by a JSON string which will be the value for that field.

Now, when the type of rule for which you want to create a test scenario is a Conversation Manager
rule (based on the Conversation Manager template), a series of different values for the Given and
Expectation elements that reflect these more complex data structures are available. In the example
below you can see the Customer > Service > State > Task structure is reflected by the four
@class entries in the drop-down list of Givens and the @class:RulesResults entry in the drop-down
list of Expectations.

When you select an @class entry, a new column is added. Click on a grid cell under the new column
to bring up the edit dialog for that entry. The additional data listed below can be selected as either a
Given or an Expectation.

Additional CM Template Objects

Givens
The list below shows the additional provided data.

• Available by selecting one of the @class entries:
• Add Customer Attribute

• Add Service

• Add Service Type

• Add Service Start Time

• Add Service Completion Time

Working with Test Scenarios

Conversation Rules Templates Guide 44



• Add State

• Add State Type

• Add State Start Time

• Add State Completion Time

• Add Task

• Add Task Type

• Add Task Start Time

• Add Task Completion Time

• Available for direct selection from Givens:
• Add Interaction Media Type

• Add Contract End Date

Expectations
The list below shows the additional expected results:

• Update Customer Attribute

• Request Specific Agent

• Request Agent Group

• Request Place Group

• Request Skill

• Send Communication to Customer

• Block Communication to Customer

• Offer Service Resumption

• Offer Survey to Customer

Edit Dialogs

To create entries for the Givens and Expectations of your Conversation Manager test scenario, select
the relevant @class item and use the sample additional edit dialogs shown below.

Working with Test Scenarios

Conversation Rules Templates Guide 45



Givens

Working with Test Scenarios

Conversation Rules Templates Guide 46



Expectations

Working with Test Scenarios

Conversation Rules Templates Guide 47


	Conversation Rules Templates Guide
	Table of Contents
	Conversation Rules Template Guide
	Conversation Rules—Overview of Genesys Elements
	Configuration Prerequisites
	Getting Started
	Working with Composer's Business Rule Block
	Use Case—Frequent Caller Interceptor
	Use Case—Contract Renewal
	Use Case—Integrate Data and Decision-Making for Developers
	Conditions
	Actions
	Working with Test Scenarios

