
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Transport Layer Security (TLS)

Web Services and Applications
Deployment Guide

5/9/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Transport Layer Security (TLS)

Contents

• 1 Transport Layer Security (TLS)
• 1.1 Configuring TLS between Web Services and Configuration Server
• 1.2 Configuring TLS for connections with Cassandra
• 1.3 Next Step

Transport Layer Security (TLS)

Web Services and Applications Deployment Guide 2

Configuring TLS between Web Services and Configuration Server

Web Services can use a secured Transport Layer Security (TLS) connection mechanism to connect to
Configuration Server. When configured, Web Services connects to a secure port on Configuration
Server, verifies the server's authority, and encrypts/decrypts network traffic. You can configure
secured connections to Configuration Server in the following ways:

• Minimal configuration
• Validate the certificate against the CA

Prerequisites
Before configuring Web Services, make sure the Configuration Server secure port is configured as
described in Introduction to Genesys Transport Layer Security in the Genesys Security Deployment
Guide and that all certificates for server host and the certificate authority are configured and
available.

Minimal configuration
Web Services does not check the server's certificate against the Certificate Authority, but all traffic is
encrypted. To configure Web Services with minimal configuration, all you need to do is configure a
connection to a secured port on Configuration Server. You can do this using either of the following
methods:

• For the initial connection to Configuration Server, set the tlsEnabled option to true in the
onPremiseSettings section of the application.yaml file (onpremise-settings.yaml file if you are
installing Web Services and Applications version 8.5.201.09 or earlier). This creates a secured
connection to Configuration Server the first time Web Services starts.

• For an environment that is already configured with Configuration Manager synchronization enabled, you
can make changes with Configuration Manager as described in the Genesys Security Deployment
Guide. These changes are synchronized back to the Cassandra database from Configuration Manager.

Validate the certificate against the CA
In order to support the client-side certificate check, Web Services needs the public key for the
Certificate Authority (CA). Web Services supports the PEM and JKS key storage formats, but
recommends using JKS because it's compatible with both Cassandra and HTTPS.

Complete the steps below to validate the certificate against the CA.

Important
The steps described in this procedure are meant to be an example for developers and
should not be used in production. For a production environment, you should follow

Transport Layer Security (TLS)

Web Services and Applications Deployment Guide 3

https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/SecuredConnections#Minimal_configuration
https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/SecuredConnections#Validate_the_certificate_against_the_CA
https://enu.docs.genesys.com/Documentation/System/latest/SDG/TLSIntro
https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/GWSConfigurationOptionsReference#tlsEnabled
https://enu.docs.genesys.com/Documentation/System/latest/SDG/Welcome
https://enu.docs.genesys.com/Documentation/System/latest/SDG/Welcome

your own company's security policies for creating and signing certificates.

Start

1. If you plan to use a JKS file, you can generate if from a PEM file by importing the PEM certificate, as
shown here:
keytool -importcert -file ca_cert.pem -keystore ca_cert.jks

2. Once you have the ca_cert.jks file, place it in a location available from your Web Services host, such
as:
• A local folder on the Web Services host
• A network share

3. Configure the following options in the serverSettings section of the application.yaml file (server-
settings.yaml if you're installing Web Services and Applications version 8.5.201.09 or earlier):
• For a PEM file, set caCertificate to the location of the file. For example:

caCertificate: /opt/ca_cert.pem

• For a JKS file, set caCertificate to the location of the file and set jksPassword to the password for the
key storage. For example:
caCertificate: /opt/ca_cert.jks
jksPassword: pa$$word

End

Configuring TLS for connections with Cassandra

Genesys supports Transport Layer Security (TLS) for connections from Web Services to Cassandra and
between Cassandra nodes. You can configure secured connections for one or both of the following
scenarios:

• Secure connections from Web Services to Cassandra
• Secure connections between Cassandra nodes

Secure Connections from Web Services to Cassandra
Prerequisites

• You have installed Bash, Java keytool and OpenSSL

Complete the following steps to configure TLS for connections from Web Services to Cassandra.

Transport Layer Security (TLS)

Web Services and Applications Deployment Guide 4

https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/GWSConfigurationOptionsReference#caCertificate
https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/GWSConfigurationOptionsReference#caCertificate
https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/GWSConfigurationOptionsReference#jksPassword
https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/SecuredConnections#Secure_connections_from_Web_Services_to_Cassandra
https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/SecuredConnections#Secure_connections_between_Cassandra_nodes

Important
The steps described in this procedure are meant to be an example for developers and
should not be used in production. For a production environment, you should follow
your own company's security policies for creating and signing certificates.

Start of procedure

1. Do one of the following:
• Create the server-side keystore with a self-signed certificate and the client-side truststore — which

contains the public part of server certificate. Run the following commands:
#!/bin/bash
#generate keypair
keytool -genkeypair -alias cassandra -keyalg RSA -keysize 1024 -dname "CN=cassandra,
OU=Test, O=Test Ltd, C=US" -keystore server.jks
-storepass password -keypass password

#export certificate
keytool -exportcert -alias cassandra -file client.pem -keystore server.jks -storepass
password -rfc

#create client truststore and import certificate
keytool -importcert -alias cassandra -file client.pem -keystore client.jks -storepass
password -noprompt

• Create a self-signed root authority, use it to sign the server certificate, store it to server.jks and
create the client-side truststore, which trusts all certificates signed with root authority. Run the
following commands:
#!/bin/sh

#generate self-signed root certificate
keytool -genkeypair -alias root -keyalg RSA -keysize 1024 -validity 3650 -dname
"CN=TestRoot, OU=Dev, O=Company, C=US" -keystore root.jks
-storepass password -keypass password

#export root certificate
keytool -exportcert -alias root -file root.crt -keystore root.jks -storepass password

#generate server-side certificate
keytool -genkeypair -alias server -keyalg RSA -keysize 1024 -validity 3650 -dname
"CN=TestServer, OU=Dev, O=Company, C=US"
-keystore server.jks -storepass password -keypass password

#create the sign request for server certificate
keytool -certreq -alias server -keystore server.jks -file server.csr -storepass
password -keypass password

#export private key of root auth: need later for signing the server certificate
keytool -v -importkeystore -srckeystore root.jks -srcalias root -destkeystore
root.p12 -deststoretype PKCS12 -noprompt
-destkeypass password -srckeypass password -destalias root -srcstorepass password
-deststorepass password

openssl pkcs12 -in root.p12 -out private.pem -password pass:password -passin
pass:password -passout pass:password

Transport Layer Security (TLS)

Web Services and Applications Deployment Guide 5

rm root.p12

#sign the certificate
openssl x509 -req -CA private.pem -in server.csr -out server.crt -days 3650
-CAcreateserial -passin pass:password
rm private.pem
rm private.srl
rm server.csr

#import root certificate to client side trust store
keytool -importcert -alias root -file root.crt -keystore client.jks -storepass
password -noprompt

#import root certificate to server side key store
keytool -importcert -alias root -file root.crt -keystore server.jks -storepass
password -noprompt
rm root.crt

#import certificate sign reply into server-side keystore
keytool -import -trustcacerts -alias server -file server.crt -keystore server.jks
-storepass password -keypass password
rm server.crt

2. Configure Cassandra to use your generated certificates for the client connection by setting the
client_encryption_options in the cassandra.yaml file. For example:
client_encryption_options:

enabled: true
keystore: <absolute path to server.jks file>
keystore_password: password
#the password specified in while creating storage
For the purpose of the demo the default settings were used.
More advanced defaults below:
#protocol: TLS
#algorithm: SunX509
#store_type: JKS
#cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA]

Important
To enable support for encryption, you must have the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction installed.

3. Confirm the Cassandra nodes can start successfully:
a. Edit the conf/log4j-server.properties file and uncomment the following line:

log4j.logger.org.apache.cassandra=DEBUG

b. Start Cassandra and check the logs. If the configuration was successful, you shouldn't see any
errors.

4. Check that SSL-to-client is working successfully using cassandra-cli:
a. Confirm that unsecured connections aren't possible by starting cassandra-cli locally — this forces it

to connect to the Cassandra instance running on localhost. You should expect to see the exception
in the cassandra-cli output.

b. Confirm that secured connections are possible by running the following command from the directory

Transport Layer Security (TLS)

Web Services and Applications Deployment Guide 6

where cassandra-cli is installed:
./cassandra-cli -tf org.apache.cassandra.cli.transport.SSLTransportFactory -ts
<absolute path to client truststore cass_client.jks> -tspw somePassword

c. If the configuration is successful, you should see the "Connected to" welcome message:
Connected to: "Test Cluster" on 127.0.0.1/9160
Welcome to Cassandra CLI version 1.2.12

5. Configure Web Services to enable secure connections:
a. On the Web Services node, open the application.yaml file.
b. In the cassandraCluster section, configure the following settings:

Parameter Type Default Description

useSSL Boolean false

Specify true to
connect Cassandra to
an SSL channel. This
paramater only
applies to Cassandra
1.2.x.

truststore String

Specify the absolute
path to the trustore
file. Ensure that Web
Services can read the
file. The supported
format is JKS.

truststorePassword String Specify the Truststore
password.

sslProtocol String TLS

Specify the SSL
protocol to be used.
This protocol is
passed to JAVA
security.

cipherSuites String
[TLS_RSA_WITH_AES_1
28_CBC_SHA,
TLS_RSA_WITH_AES_2
56_CBC_SHA]

Specify a list of
ciphers in the form of
a yaml list. The list
must match the list
that is configured in
Cassandra.

c. Specify your Cassandra version using the cassandraVersion parameter.

Important
Web Services does not support Cassandra 1.1 for on premise deployments.

End or procedure

Transport Layer Security (TLS)

Web Services and Applications Deployment Guide 7

https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/GWSConfigurationOptionsReference#cassandraVersion

Secure connections between Cassandra nodes
When you enable SSL for connections between Cassandra nodes, you ensure that communication
between nodes in the Cassandra cluster is encrypted, and that only other authorized Cassandra
nodes can join the cluster.

The steps below show you how to create a single certificate to be used by all Cassandra nodes in the
cluster. This simplifies cluster management because you don't need to generate a new certificate
each time you add a new node to the cluster, which means you don't need to restart all nodes to load
the new certificate.

Important
The steps described in this procedure are meant to be an example for developers and
should not be used in production. For a production environment, you should follow
your own company's security policies for creating and signing certificates.

Start

1. Generate a keystore and truststore. See Step 1 of Secure connections from Web Services to Cassandra
for details.

2. On each Cassandra node in the cluster, set server_encryption_options in the cassandra.yaml file.
For example:
server_encryption_options:

internode_encryption: all
keystore: <absolute path to keystore >
keystore_password: <keystore password - somePassword in our sample>
truststore: <absolute path to trustore>
truststore_password: <truststore password - somePassword in our sample>

3. Check the Cassandra logs. If the configuration was successful, you shouldn't see any errors.

End

Next Step

• Back to Configuring security

Transport Layer Security (TLS)

Web Services and Applications Deployment Guide 8

https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/SecuredConnections#Secure_connections_from_Web_Services_to_Cassandra
https://enu.docs.genesys.com/Documentation/IW/8.5.2/Dep/Security

	Web Services and Applications Deployment Guide
	Transport Layer Security (TLS)

