
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Subresources

Web Services API Reference

5/7/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Subresources
This is part of the API Basics section of the Web Services API.

Contents

• 1 Subresources
• 1.1 Overview
• 1.2 Selecting Subresources
• 1.3 Filtering and Sorting by Subresource Properties

Subresources

Web Services API Reference 2



Overview

Web Services includes a feature called subresources, which allows reading the subresources of an
object.

Example - Show all subresources
For example, if we have a user object which has one or more skills and one or more devices
associated twith it, and we want to read all of those in one request we need to do the following:

Request
GET .../api/v2/users/<user_id>?subresources=*

Response
{

"id":<user_id>,
"firstName":<first_name>,
...
"skills":[{

"id":<skill_1_id>,
...

},
...
{

"id":<skill_N_id>,
...

}],
"devices":[{

"id":<device_1_id>,
...

},
...
{

"id":<device_M_id>,
...

}]
}

If the subresources parameter is not included in the request, you receive everything except the
"skills" collection and "devices" collection.

Important
It is also possible to apply subresources feature to object settings and request both an
object and its settings in one request.

Subresources

Web Services API Reference 3



Selecting Subresources

In the example above, we specify subresources=* to get all available subresources.

If the object we are interested in has several types of subresources, we can choose which
subresources to be returned. This could be achieved by specifying a comma-separated list of
subresources.

Example
Request
GET .../api/v2/users/<user_id>?subresources=skills,devices

Response
{

"id":<user_id>,
"firstName":<first_name>,
...
"skills":[{

"id":<skill_1_id>,
...

},
...
{

"id":<skill_N_id>,
...

}],
"devices":[{

"id":<device_1_id>,
...

},
...
{

"id":<device_M_id>,
...

}]
}

Example 2
Request
GET .../api/v2/users/<user_id>?subresources=skills

Response
{

"id":<user_id>,
"firstName":<first_name>,
...
"skills":[{

"id":<skill_1_id>,
...

Subresources

Web Services API Reference 4



},
...
{

"id":<skill_N_id>,
...

}]
}

Filtering and Sorting by Subresource Properties

If an object has subresources, it is possible to filter and sort by their properties. For example: show all
users with skill "Sales". This could be achieved by using subresource name (for example "skills")
followed by a dot and its property (for example ".name").

Example - Sorting by Skill Name
Request
GET .../api/v2/users?subresources=skills&fields=id,userName&skills.name=Sales

Response
{

"statusCode": 0,
"users": [{

"id": "3454353254324",
"userName": "cmburns@springfieldnclear.com",
"skills":[{

"id": "0890689",
"name": "Sales",
"level": 2

}
},
{

"id": "3567365736736",
"userName": "hsimpson@springfieldnclear.com,
"skills":[{

"id": "0890689",
"name": "Sales",
"level": 4

}
}]

}

Example 2
Request
GET .../api/v2/users?subresources=skills&fields=id,userName&sortBy=skills.levelℴ=Descending

Subresources

Web Services API Reference 5



Response
{

"statusCode": 0,
"users": [{

"id": "3567365736736",
"userName": "hsimpson@springfieldnclear.com,
"skills":[{

"id": "0890689",
"name": "Sales",
"level": 4

}
},
{

"id": "3454353254324",
"userName": "cmburns@springfieldnclear.com",
"skills":[{

"id": "0890689",
"name": "Sales",
"level": 2

}
}]

}

Subresources

Web Services API Reference 6


	Web Services API Reference
	Subresources

