3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Web Services APl Reference

Web Services and Applications 8.5.2

12/29/2021

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Web Services APl Reference 15
Getting started 18
Making a Request 19
Interpreting a response 25
Working with agents 30
Answering a call 33
API basics 36
What are operations? 37
What are capabilities? 38
CometD notifications 44
Error handling a7
Request Parameters 48
Working with roles 59
Filtering 60
Filtering and sorting users by fields and subresources 62
Subresources 65
Return Values 69
Recovering Existing State 76
Toast and case data 82
Disposition codes 87
Cross-Origin Resource Sharing 89
Cross-Site Request Forgery protection 91
Features 100
Services 104
Voice API 107
CometD notifications 111
Call resource 115
Device resource 118
StartContactCenterSession 121
EndContactCenterSession 127
Ready 128
Not Ready 130
Aux Work 132
After Call Work 134

Offline 136

DoNotDisturbOn
DoNotDisturbOff
ForwardCallsOn
ForwardCallsOff

Dial

Answer

Reject

Hold

Retrieve

Hangup

SendDTMF

MuteCall

UnmuteCall
SetCallDisposition
SingleStepConference
InitiateConference
CompleteConference
RemoveParticipantFromConference
ClearCall
SingleStepTransfer
InitiateTransfer
CompleteTransfer
SwapcCalls
MergeWithOtherCall
AttachUserData
UpdateUserData
DeleteUserData
DeleteUserDataPair
Listenin

Coach

Bargeln
CancelSupervisionMonitoring
SwitchToBargeln
SwitchToListenIn
MuteMonitoredUser
UnmuteMonitoredUser
StartCallRecording

138
140
142
144
146
150
152
154
156
158
160
162
164
166
168
172
175
178
180
182
185
193
201
210
211
213
216
218
220
223
226
229
231
234
237
240
243

PauseCallRecording
ResumeCallRecording
StopCallRecording
IM Session API
CometD notifications
IM Session Resource
InitiatelMSession
SendMessage
AttachUserData
UpdateUserData
DeleteUserData
Complete
Multimedia Interactions API
Chat API
CometD notifications
Chat Resource
Accept
Reject
SendMessage
Leave
Complete
SendURL
AddAttachment
GetAttachment
RemoveAttachment
UploadFile
DeleteFile
SendStartTypingNotification
SendStopTypingNotification
SetinFocus
SetDisposition
AddComment
SendCustomNotice
AttachUserData
UpdateUserData
DeleteUserData
Transfer

245
247
249
251
252
254
256
258
260
262
264
266
268
269
271
274
277
281
283
285
287
289
291
297
298
301
303
305
307
309
310
312
314
316
319
322
325

Invite 327

Consult 330
CancelConsult 334
SendToAgents 336
SendStartTypingToAgentsNotification 338
SendStopTypingToAgentsNotification 340
RemoveParticipantFromConference 342
SendCustomNoticeToAgents 349
Supervisor Monitoring 351
Monitor 356
Coach 358
Bargeln 360
CancelSupervisorMonitoring 362
Intrude 363
SwitchToBargeln 365
SwitchToMonitor 368
SwitchToCoach 371
GetAgentinteractions 374
SendNicknameUpdatedNotice 376
Customer Chat API 378
General 379
Customer Chat Resource 381
Customer Chat Messages 383
RequestChat 385
SendMessage 387
SendStartTypingNotification 389
SendStopTypingNotification 391
Complete 393
GetChat 395
GetMessages 397
Digital User Events API 399
Publish 400
Subscribe 402
Unsubscribe 404
Email API 406
CometD notifications 408

Email Resource 411

Accept 413

Reject 416
Create 419
Save 421
Cancel 423
Reply 425
ReplyAll 428
Send 431
SetDisposition 434
Complete 437
AttachUserData 440
UpdateUserData 443
DeleteUserData 446
AddComment 449
SetinFocus 451
AddAttachment 452
GetAttachment 454
RemoveAttachment 456
Transfer 458
Facebook API 461
CometD notifications 463
Facebook Resource 465
Accept 468
Reject 471
Create 474
Save 476
Cancel 478
Reply 480
Send 484
SetDisposition 486
Complete 488
AttachUserData 491
UpdateUserData 493
DeleteUserData 495
AddComment 497
SetinFocus 499

Transfer 500

Facebook Private Messaging API 503

CometD notifications 505
FacebookSession Resource 508
Accept 513
Reject 517
SendMessage 519
SendUrl 521
SetinFocus 523
SetDisposition 524
Leave 526
Complete 529
AttachUserData 532
UpdateUserData 536
DeleteUserData 540
AddComment 543
Transfer 545
Consult 551
SendToAgents 556
RemoveParticipantFromConference 558
ReportStandardResponseUsage FacebookSession 569
Open Media API 571
CometD notifications 572
OpenMedia Resource 574
Create 575
Accept 577
Reject 579
SetinFocus 581
Complete 582
AddContent 584
GetContent 587
AttachUserData 589
UpdateUserData 591
DeleteUserData 593
Transfer 595
SMS Session API 598
SMS Session Resource 600

Accept 603

Reject 607

SendMessage 609
Leave 611
Complete 613
SendURL 615
SendStartTypingNotification 617
SendStopTypingNotification 619
SetinFocus 621
SetDisposition 622
AddComment 624
SendCustomNotice 626
GetMessages 628
AttachUserData 630
UpdateUserData 633
DeleteUserData 636
Transfer 639
Invite 641
Consult 645
CancelConsult 649
SendToAgents 651
SendStartTypingToAgentsNotification 653
SendStopTypingToAgentsNotification 655
RemoveParticipantFromConference 657
SendCustomNoticeToAgents 664
Monitor 666
Coach 668
Bargeln 670
CancelSupervisorMonitoring 672
Intrude 673
SwitchToBargeln 675
SwitchToMonitor 678
SwitchToCoach 681
GetAgentlinteractions 684
Standard Responses API 686
GetStandardResponse 687
RenderStandardResponse 694

ReportStandardResponseUsage 697

GetStandardResponseFavorites 699

AddStandardResponseFavorite 700
DeleteStandardResponseFavorite 701
DeleteAllStandardResponseFavorites 702
GetDocumentStandardResponse 703
Twitter API 704
CometD notifications 706
Twitter Resource 710
Accept 712
Reject 716
Create 720
Save 722
Cancel 725
Reply 727
Send 729
SetDisposition 731
Complete 735
AttachUserData 738
UpdateUserData 742
DeleteUserData 746
AddComment 750
SetinFocus 752
Follow 753
Unfollow 755
Retweet 757
Transfer 759
Workbins API 762
CometD notifications 763
Workbin Resource 766
GetWorkbins 767
GetWorkbinContent 773
AddInteractionToWorkbin 784
PulllnteractionFromWorkbin 787
Subscribe To Workbin Notifications 790
Unsubscribe from Workbin Notifications 793
PullinteractionFromWorkbin for Supervisor 796

AddInteractionToWorkbin for Supervisor 799

GetGroupWorkbinContent
AddInteraction to a Group Workbin
Pullinteraction from a Group Workbin
Subscribe to Group Workbin Notifications
Unsubscribe from Group Workbin Notifications
RequestStats
RequestAgentStats

Workitem API
CometD notifications
Workitem Resource
Workitem Create
Workitem Accept
Workitem Reject
Workitem SetinFocus
Workitem Complete
Workitem AttachUserData
Workitem UpdateUserData
Workitem DeleteUserData
Workitem Transfer

Channels API

Channel resource

Get all channels

Get channel by ID

Set channel to Ready

Set channel to NotReady

Set all channels to Ready

Set all channels to NotReady

Set all channels to DNDOnN

Set all channels to DNDOff

Provisioning API

Business Unit API
Create a Business Unit
Remove Business Unit
Assign Supervisor to Business Unit
Assign Queue to Business Unit
Remove Queue from Business Unit
Bulk Assign Queues to a Business Unit

802
811
815
819
822
824
826
831
832
834
836
838
840
842
843
845
847
849
851
854
855
857
859
860
861
862
863
864
865
866
867
870
871
872
873
874
875

Assign Skill to a Business Unit

Remove Skill from a Business Unit

Bulk Assign Skills to a Business Unit

Assign Agent to Business Unit

Remove Agent from Business Unit

Bulk Assign Agents to as Business Unit

Assign Business Unit To Agent

Remove Business Unit from Agent

Retrieve Business Unit Content

Retrieve Business Units list
Devices API

Operations

Attributes

List Devices

Create Device

Delete Device

Assign Device

Unassign Device

Create and Assign Device to User
Place Management API

List Places

List Place by ID

List Places Assigned to User

List Places Assigned to Business Unit

Create

Update

Delete

Assign Device to Place

Unassign Device from Place

Assign Place to User

Unassign Place from User

Assign Place to Business Unit

Unassign Place from Business Unit
Users API

User Resource

Create User

Delete User

876
877
878
879
880
881
882
883
884
885
886
887
888
891
893
894
895
896
897
898
899
900
901
903
905
906
907
908
909
910
913
914
917
918
919
921
923

Update User
Get all Users
Get a Specific User
Get all Sub-Resources for a User
Unlock User Account
User Settings API
Get Settings Groups
Create Settings Group
Delete Settings Group
Get Settings
Create Setting
Update Setting
Delete Setting
Contacts API
Contact resource
Get contacts
Create a custom contact
Update a custom contact
Delete a custom contact
Settings API
Settings resource
System settings
Custom settings
Statistics API
Monitored statistics
Get most recent statistic values
Hierarchical Dispositions API
Retrieve all configured dispositions in a specific disposition group
Retrieve full contents of a specific disposition category
Retrieve full disposition and category tree
Create a new disposition
Remove a disposition
Create sub-category of dispositions
Create top-level disposition group
Remove sub-category of dispositions
Remove root-level disposition group
Configuration Manager Scenarios

924
926
927
928
930
931
932
933
935
936
938
939
940
9241
942
947
958
959
960
961
962
965
974
280
981
1000
1002
1004
1005
1006
1008
1009
1010
1011
1012
1013
1014

Platform Configuration API 1016

Outbound API 1022
Outbound Campaign Resource 1024
Outbound Record Resource 1026
Request Campaign Status 1027
Start Preview Session 1029
End Preview Session 1031
Request Preview Record 1033
Dial Preview Record 1036
Reject Record 1038
Cancel Record 1041
Cancel Record with Phone Number 1044
Complete Record 1047
Do Not Call Record 1051
Do Not Call Record with Phone Number 1054
Create Record 1057
Update Record 1061
Get Chained Record 1064
Reschedule Record 1067
Incoming Call From an Outbound Campaign 1070

Interaction History API 1071
CometD notifications 1072
Interaction history resource 1076
Message resource 1078
RetrieveContactHistory 1079
RetrieveAgentHistory 1082
RetrievelnteractionHistory 1086
GetlnteractionContent 1090

UCS Integration with Voice API 1093
IdentifyUCSContact 1094
FindPhoneCall 1096
SetCallNote 1098
SetCallCompleted 1100
SetCallContact 1102

Supervisor Agent State Control API 1104
Ready 1105

NotReady 1107

DoNotDisturbOff
DoNotDisturbOn
Offline

Service API
Runtime
Configuration

1109
1111
1113
1115
1116
1120

Web Services APl Reference

Web Services APl Reference

Welcome to the Web Services APl Reference. This guide provides information about how you can use
the Web Services REST API to incorporate Genesys features into custom applications and integrations

with third-party software.

The Web Services API offers the following services:

Voice API

Handle telephony interactions,
including SIP.

Multimedia Interactions API

Handle multimedia (eServices)
interactions.

Channels API

Manage the different interaction
channels available to an agent.

Provisioning API

Automate Genesys provisioning.

Contacts API

Manage contacts and interaction
history.

Settings API

Configure Web Services
parameters.

Web Services APl Reference

15

Web Services APl Reference

Statistics API

Make use of Genesys statistics.

Hierarchical Dispositions API

Manage the possible disposition
values of interactions.

Platform Configuration API

Manage Configuration Server
data.

Outbound API

Handle outbound interactions and
campaigns.

Interaction History API

Retrieve interaction history for an
agent or contact.

Service API

Retrieve system runtime
information.

Web Services APl Reference

16

Web Services APl Reference

Developer Support

WWE on the Genesys Developer Portal.

Web Services APl Reference

17

Getting started

Getting started

The following topics use simple cURL statements to show you how to use basic features of the Web
Services API. Once you understand these principles, you can use them to write your own apps.

You are about to learn how to:

* Make a request
* Interpret a response
¢ Work with agents

e Answer a call

Some basics

Web Services uses a RESTful API that sends and receives data over HTTP in the text-based JSON
(JavaScript Object Notation) data-interchange format. JSON is an easy way to create, read, update,
and delete data.

cURL

CcURL is a command line tool that allows you to make barebones HTTP requests. It is a great way to
explore the syntax of the Web Services API. For more information about cURL, check out the project
website at http://curl.haxx.se/.

Prerequisites

This tutorial assumes that you have set up Web Services, as shown in the Web Services and
Applications Deployment Guide, and that you are familiar with HTTP requests.

What's next?

Let's get started by making a request.

Web Services APl Reference

18

https://docs.genesys.com/Documentation/HTCC/latest/Dep/Welcome
https://docs.genesys.com/Documentation/HTCC/latest/Dep/Welcome

Getting started Making a Request

Making a Request

You can use the Web Services API to send and receive]SON-based data over HTTP. We are using
cURL, which is command-line based, so you will want to open your favorite command line, terminal,
or shell program, after making sure that it supports cURL. And of course, you should plug in the URL
for your own Web Services server, as well as other site-specific information, when you issue the
following cURL commands.

A simple request

As you might expect, your HTTP requests require a URL that contains the address of your server and
the path to your Web Services API library.

Ensure that the entire URL request does not exceed 2000 characters.

The rest of the URL indicates what kind of operation you would like to perform. Web Services
operations are asynchronous. When a request returns "statusCode": 0, this doesn't indicate a
successful change of state — only that the request was successfully sent to T-Server.

In most cases, when you send a request you will also need to provide authentication. But you don't
need authentication to ask for your current version of Web Services. To do this, type in the following
cURL command:

curl http://000.111.222.333/api/v2/diagnostics/version
The above request will return something like this:

{"statusCode":0,"version":"8.5.200.50"}

[+] Click here to see other ways you can retrieve the Web Services
version.

Instead of using cURL, you can also get the version using JavaScript, a REST client, or a web browser.

JavaScript

<!doctype html>
<html>
<head>
<script src='//ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js'></script>
<script>
$(document) .ready(function() {

Web Services APl Reference 19

Getting started

Making a Request

// Add a click handler to the getVersion button.
$('#getVersion')
.click(function() {

// Create and configure the request.
var request = {

url: 'http://localhost:8080/api/v2/diagnostics/

version',
type: 'GET', crossDomain: true, success: function
(result) {
// Update the label with the result.
$('#version').text(result.version);
}I
error: function (result) {
alert('Failed to get version.');
}
+
$.ajax(request);
1)
1)
</script>
</head>
<body>
<div>
<button id='getVersion'>Get Version</button>

<label id='version'>-</label>
</div>
</body>
</html>
Response
{

"statusCode":0,
"version":"8.5.200.23"
}

REST client

Instead of writing a client application to test your API calls, you can use a REST client embedded in

your web browser.

Web Services APl Reference

20

Getting started Making a Request

A Target
Target Accept
Request URI Content-Type

http:/Vlocalhost/apyv2/diagnostic shversion

Request Method Language
GET

Request Timeout

&0 seconds

Response

Response

Response Body RAW Body Response Headers Response Prevew Request Body Request Headers

Color Theme Force Syntax Highlighting
Boolstrap ¥ Aute '® JSON XML HTML css

Web browser

This call is the only REST API call you can make in a web browser because it doesn't require
authentication. All you need to do is navigate to the following URL: http://WS_Server:WS Port/
api/v2/diagnostics/version

Where WS_Server is the IP of your Web Services node and WS_Port is its port.

Response

{"statusCode":0,"version":"8.5.200.23"}

Authentication

The following request asks for information about user ksippo. Like most Web Services requests, this

Web Services APl Reference 21

Getting started Making a Request

one requires authentication. cURL allows us to specify the user name and password by using the
format -u username:password.

The user mentioned in the following request does not have a password, so we have left the password
field empty:

curl -u ksippo: http://000.111.222.333/api/v2/me
The response from the Web Services server should look something like this:

{
"statusCode":0,
"user":{
"id":"63630bbebf4840d7a0bffd6312bc29ff",
"userName":"ksippo",
"firstName":"Kristi",
"lastName":"Sippola",
"roles":["ROLE_AGENT"],
"enabled":true,
"changePasswordOnFirstLogin":false,
"uri":"http://127.0.0.1/cloud-web/api/v2/users/
63630bbebf4840d7a0bffd6312bc29ff",
"path":"/users/63630bbebf4840d7a0bffd6312bc29ff"
}

Sending data

Sending data is a bit more complex. We use a POST request and indicate to cURL that we are sending
data in JSON format. We also use a URL that tells the Web Services server to carry out an operation
for the current user, ksippo.

Finally, the following request uses the cURL data parameter, -d, to carry the JSON payload, which lets
the server know that we want to set ksippo's status to NotReady.

Web Services APl Reference 22

Getting started Making a Request

curl -X POST -H "Content-Type: application/json" -d '{"operationName":"NotReady"}' -u ksippo: http://000.111.222.333/api/v2/me/channels/
voice

Web Services APl Reference 23

Getting started Making a Request

If we did everything right, we will get confirmation from the server by way of a status code of 0:

{"statusCode":0}

Filtering a request

You may also want to get specific information associated with an agent or other user, such as a list of
their skills or devices. To do this, you can filter your request, as shown in the Subresources topic.

What's next?

Now that we have an idea of how to send requests, let's take a look at how to interpret responses
from the Web Services server.

Web Services APl Reference 24

https://docs.genesys.com/Documentation/HTCC/latest/API/Subresources

Getting started Interpreting a response

Interpreting a response

On the previous page, we showed you how to use cURL to make some basic requests. Now we will
show you how to interpret the response from the Web Services server.

Determining your Web Services version

The first request we sent asked for the current version of Web Services. It looked like this:
curl http://000.111.222.333/api/v2/diagnostics/version

The following response starts with a status code of 0, which indicates that our request was
successful. The version parameter, surprisingly enough, tells you what your current version of Web
Services is:

{"statusCode":0,"version":"8.5.200.50"}

Web Services status codes

When you are trying to figure out what happened with your request, you may find it helpful to
understand the status codes that have been returned by the Web Services server. These codes are
described in a table on the Return Values page.

Note in particular that a status code of 20 means that you have failed authentication, as we will show
in the next section.

Getting user information

The second request we sent on the previous page asked for information about user ksippo. This
request included authentication information, as shown here:

curl -u ksippo: http://000.111.222.333/api/v2/me
This request should receive a status code of 0, followed by user information about ksippo:

{

"statusCode":0,

"user":{
"id":"63630bbebf4840d7a0bffd6312bc29ff",
"userName":"ksippo",
"firstName":"Kristi",
"lastName":"Sippola",
"roles":["ROLE_AGENT"],

"enabled":true,
"changePasswordOnFirstLogin":false,

Web Services APl Reference 25

https://docs.genesys.com/Documentation/HTCC/latest/API/ReturnValues

Getting started Interpreting a response

"uri":"http://127.0.0.1/cloud-web/api/v2/users/
63630bbebf4840d7a0bffd6312bc29ff",
"path":"/users/63630bbebf4840d7a0bffd6312bc29ff"
}

Don't forget...

Note that if we send that request without including authentication information, we will receive an
error message. That is, if we send something like this:

curl http://000.111.222.333/api/v2/me
...the Web Services server won't let us in, and will send a response like this:
{"statusCode":20, "statusMessage":"Access denied"}

As mentioned above, the status code of 20 indicates that we have failed authentication and are
therefore denied access, as clarified by the status message.

[+] Click here to see other ways you can retrieve user information.

Instead of using cURL, you can also get user information using JavaScript or a REST client.

JavaScript

<!--

This sample improves on the version.html sample by making the server location
configurable

and also allowing credentials to be entered. To establish a session with Genesys Web
Services,

a Basic Authorization header must be included. Subsequent requests can also include
this header

or they can rely on the cookie established by the first request.

The sample request this time is to return basic information about 'me' (the user
making the request as
identified by the credentials).
-->
<!doctype html>
<html>
<head>
<script src='//ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js'></script>
<script>
$(document) .ready(function() {

$('#getMe')
.click(function() {

// Read the values from the input boxes
var username = $('#username').val();
var pw = $('#password').val();

var uri = $('#baseUri').val();
uri += 'api/v2/me';

// Create and configure the request
var request = {

Web Services APl Reference 26

Getting started Interpreting a response

url: uri,
type: 'GET',
crossDomain: true,
success: function (result) {
// Update the textarea with a string version of the
resulting JSON
$("#result').text(JSON.stringify(result.user, null,
4));
}I
error: function (result) {
alert('Failed to get my user info.');
}

};

// This adds the Authorization header. The call to btoa base
64 encodes the username and
// password separated by a ':'. For more info on Basic
authentication check the RFC.
request.beforeSend = function (xhr) {
xhr.setRequestHeader('Authorization', 'Basic
' + window.btoa(username + ':' + pw));

’

$.ajax(request);
3
1)
</script>
</head>
<body>
<div>
<input id='baseUri' type='text' style='margin-bottom: 5px; width: 200px;'
placeholder='GWS Base Uri' value='http://localhost:8080/'>

<input id='username' type='text' style='margin-bottom: 5px; width: 200px;"
placeholder='Username' value='paveld@redwings.com'>

<input id='password' type='password' placeholder='Password' value='password'>

<button id='getMe'>Get Me</button>

<textarea id='result' rows='20' cols='100'></textarea>
</div>
</body>
</html>
REST client

To retrieve agent information, we must authenticate, as shown here (in our case, cspencer is the
user and there is no password associated with her account):

Web Services APl Reference 27

Getting started

Interpreting a response

Username

Cspencer

Password

Basic Authorization

Set Header Reset
Choose Set Header, and you should see something similar to the following:
7 Authorization
Authorization Header:
td Basic Auth Setup oAuth Refresh oAuth

Request Now that you've been authenticated, you can make the request:

2 Target
Target
Request URI

hitp:i/localhost/apihime

Request Method
GET

Request Timeout

seconds

Response

Web Services APl Reference

28

Getting started

Interpreting a response

Response

Response Body RAW Body Response Headers Response Preview Request Body

Color Theme Force Syntax Highlighting
Bootstrap ¥ Oaute ®JsoN OXML OHML ©cCss

“statusCode™: 0,
“umar=:
"i1d®: “dbh693392ETaldb9za0d436 4TI DEDddL",

Request Headers

"uri®: "http://127.0.0.1/cloud-web/api/vd users/db693392687a14b8280d4 364 1bEbdda=,

"userlame®: “capencer”,

“firstName®: “Carole®,
"lastHame®™: "Spencer”,
"rolea®: ["ROLE_AGENT"™],

"enabled®: true,
"changePasswordinFiratLogin™: false

What's next?

Next up, let's learn how to work with agents.

Web Services APl Reference

29

Getting started Working with agents

Working with agents

Setting agent status to Ready

Once your agent is logged in, you can set their status to Ready for those channels they will be
working with. Here is how to set an agent ready to work with voice:

Web Services APl Reference 30

Getting started Working with agents

curl -X POST -H "Content-Type: application/json" -d '{"operationName":"Ready"}' -u ksippo: http://000.111.222.333/api/v2/me/channels/voice

Web Services APl Reference 31

Getting started Working with agents

If your request succeeded, the Web Services server will respond with a status code of 0:

{"statusCode":0}

Working with channels

You can also enable the agent to handle other channels, either in addition to or instead of the initial
channel. Or you can disable this ability by setting the agent to Not Ready for a particular channel.
For more information on how to do this, consult the documentation for the GWS Channels API.

The API docs for individual channels also contain information about how to carry out agent state
operations, such as these topics in the Voice API.

What's next?

Now that your agent is ready, let's answer a call.

Web Services APl Reference 32

https://docs.genesys.com/Documentation/HTCC/latest/API/ChannelsAPI
https://docs.genesys.com/Documentation/HTCC/latest/API/AgentState

Getting started Answering a call

Answering a call

Now that your agent is ready to receive calls, you can answer one by sending a request that will look
a lot like this. Note that the string at the end of the URL is the ID associated with the call resource:

Web Services APl Reference 33

Getting started

Answering a call

curl -X POST -H "Content-Type: application/json" -d '{"operationName":"Answer"}'
0071023821aec011

-u ksippo: http://000.111.222.333/api/v2/me/calls/

Web Services APl Reference

34

Getting started Answering a call

If your request is successful, you will receive a status code of 0:

{"statusCode":0}

Web Services operations are asynchronous. When a request returns "statusCode":0, this doesn't
indicate a successful change of state — only that the request was successfully sent to T-Server.

What's next?

Now that you have learned some of the basic features of the Web Services API, you may want take a
look at the rest of the API, as it will let you do just about anything you might want to with the
Genesys software.

Web Services APl Reference 35

API basics

Answering a call

APl basics

The Web Services APl is a REST API, but it's important to realize that it sometimes departs from the
standard REST API requests and responses. Make sure to review all the topics below for details about
unique points in the Web Services API, along with the basics about how the API works.

e What are operations?

* What are capabilities?

» Asynchronous events

e Error handling

* Recovering existing state

* Toast and case data

Disposition codes
Request parameters
Return values
Subresources

Filtering

Filtering and sorting users by
fields and subresources

Cross-Origin Resource Sharing

Cross Site Request Forgery
protection

Features

Services

Web Services APl Reference

36

API basics What are operations?

What are operations?

The typical core requests in a REST API include create, read, update, and delete; however, there are
several areas of the Web Services APl where the design departs from these core requests on
resources.

Many of the APIs that make up the Web Services API have differing requests for a particular resource
that must be processed asynchronously. To accommodate these requests, Web Services API
introduces the notion of an "operation". If a Web Services resource supports this concept, then you
can send a POST request with the name of the operation to be executed, along with any supporting
parameters it requires.

You'll find that operations are implemented across the Web Services API for a variety of resources.

Consider the Voice API, where the majority of the traditional voice functionality, such as agent state
manipulation and call control, is implemented in this manner. For example, the call resource supports
operations such as Dial, Answer, and Hangup, while the device resource supports operations such as
Ready and NotReady.

If an operation is required for a particular request, it's listed in the "Parameters" table on the request
page:

Parameter Value
operationName Answer

To use an operation, just include the operation name in the POST body:

POST api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000C
{

"operationName": "Answer"

}

Web Services APl Reference 37

API basics What are capabilities?

What are capabilities?

Capabilities is a complimentary concept the Web Services APl uses to help client application
developers decide when it's appropriate to allow an operation to be performed.

When you perform an operation, Web Services returns a CometD notification that includes the related
resource, with a property called "capabilities". This property provides a list of operation names that
are valid for the current state of the resource.

One of the great things about capabilities is that they can help you understand when to enable or
disable functionality in your Ul. For instance, consider the capabilities available for the device
resource below:

Web Services APl Reference 38

API basics

What are capabilities?

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [
{

"id": "9cl4cad7-17c4-48d0-8492-7cfOff92c224",
"deviceState": "Active",
"userState": {
"id": "900D55CC-2BBO-431F-8BF9-D3525B383BE6",
"displayName": "Not Ready",
"state": "NotReady"
}I
"phoneNumber": "5001",
"e164Number": "5001",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [

"ForwardCallsOn",
"DoNotDisturbOn"
]
h
|
}!
"channel": "/v2/me/devices"

}

Web Services APl Reference

39

API basics What are capabilities?

The device resource has two capabilities in its current state:

e ForwardCallsOn

¢ DoNotDisturbOn

Based on this, your application could enable the Ul elements for forwarding calls and turning on Do
Not Disturb while at the same time disabling others, such as the ability to turn off Do Not Disturb
(since it's already off, as indicated by the list of capabilities and "doNotDisturb": "Off" in the
example above).

If the user triggers the Ul to turn on Do Not Disturb, you would send a DoNotDisturbOn request, and
receive the following DeviceStateChangeMessage:

Web Services APl Reference 40

API basics

What are capabilities?

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [
{

"id": "9cl4cad7-17c4-48d0-8492-7cfOff92c224",
"deviceState": "Active",
"userState": {
"id": "900D55CC-2BBO-431F-8BF9-D3525B383BE6",
"displayName": "Not Ready",
"state": "NotReady"
}I
"phoneNumber": "5001",
"e164Number": "5001",
"telephonyNetwork": "Private",
"doNotDisturb": "On",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [

"ForwardCallsOn",
"DoNotDisturbOff"
]
h
|
}I
"channel": "/v2/me/devices"

}

Web Services APl Reference

41

API basics What are capabilities?

In the example above, you can see that DoNotDisturbOn is no longer available in the capabilities —
it's been replaced by DoNotDisturbOff. Also note that the doNotDisturb property is now set to "On".

Like devices, the call resource provides a capabilities property, as shown in the
CallStateChangeMessage:

"data": {
"messageType": "CallStateChangeMessage",
"notificationType": "StatusChange",
"extensions": {
"WrapUpTime": 0,
"BusinessCall": 0
}I
"call": {
"id": "011DJV5JI898NB2L0O400OVTAESO0000B",
"connId": "007102385535e00a",
"state": "Ringing",
"callUuid": "011DJV5JI898NB2L0O400OVTAESOOOOOB",
"deviceUri": "http://127.0.0.1:8080/api/v2/devices/
74152ed8-858f-4a33-9e96-36213a678d30",
"uri": "http://127.0.0.1:8080/api/v2/me/calls/011DIV5JI898NB2LO40OOVTAESOO000B",
"participants": [

"el64Number": "5001",
"formattedPhoneNumber": "5001",
"phoneNumber": "5001",
"digits": "5001"
b
]I
"dnis": "5000",
"callType": "Internal",
"capabilities": [
"AttachUserData",
"Answer",
"UpdateUserData",
"DeleteUserData",
"DeleteUserDataPair"
]I
"duration": "O",
"mute": "Off",
"supervisorListeningIn": false,
"monitoredUserMuted": false
}I
"phoneNumber": "5000"

}I
"channel": "/v2/me/calls"
)

Since this call is ringing (see the "state" property in the example above), a limited set of capabilities
are provided, including the Answer operation. If the user answers the call, Web Services sends
another CometD notification with an updated state and list of capabilities:

"data": {
"messageType": "CallStateChangeMessage",
"notificationType": "StatusChange",
"extensions": {
"WrapUpTime": 0,
"BusinessCall": 0

Web Services APl Reference 42

API basics

What are capabilities?

}I

"call": {

"id":

"connId": "007102385535e00a",
"state": "Established",

"callUuid":
"deviceUri":

"011DJV5JI898NB2LO40OOVTAESOO000B",

74152ed8-858f-4a33-9€96-36213a678d30",

}

"uri':

"participants": [

] r

"el64Number": "5001",
"formattedPhoneNumber":
"phoneNumber": "5001",
"digits": "5001"

b

"dnis": "5000",
"callType": "Internal",
"capabilities": [

]’

"AttachUserData",
"InitiateConference",
"UpdateUserData",
"HOld",
"SingleStepTransfer",
"DeleteUserData",
"SingleStepConference",
“Hangup”,
"DeleteUserDataPair",
"SendDtmf",
"InitiateTransfer"

"duration": "5",
"mute": "Off",

"supervisorListeningIn": false,
"monitoredUserMuted": false

}I

"phoneNumber": "5000"

}I

"channel": "/v2/me/calls"

"5001",

"011DJV5]I898NB2LO400OVTAESO0000B",
"http://127.0.0.1:8080/api/v2/devices/

"http://127.0.0.1:8080/api/v2/me/calls/011DIV5JI898NB2LO400OVTAESOO000B",

As you can see, the set of available capabilities is expanded to allow typical call operations, like Hold

or Hangup, once the call is established ("state":

"Established").

For details about capabilities for other resources, just look at the "Samples" section for any operation
page in this guide — it includes a "CometD Notification" section with a real-world examples of
notifications.

Web Services APl Reference

43

API basics

CometD notifications

CometD notifications

Many requests in the Web Services API are asynchronous. When you send an asynchronous request,
typically an operation, Web Services still returns an HTTP response with a status code like other
requests, but this only means the request was processed and sent to a backend Genesys server, like
T-Server. When the server finishes processing the request and notifies Web Services of any changes
in state or errors, Web Services then sends the updated state or error details to the client application

as CometD notifications.

Web Services uses CometD to deliver these unsolicited notifications to clients. CometD is a library
that allows the server to deliver messages to a web-based client with low-latency using a variety of
transports. The transport used to deliver messages is negotiated between the client and server based
on what the client supports running in a particular browser. Example transports include long polling
and web sockets. CometD also provides a basic infrastructure for publishing and subscribing to
messages. For more information about CometD, or for details about where to obtain client-side

CometD libraries for various platforms, see the official CometD site.

A basic understanding of CometD is a prerequisite to developing a client application

using the Web Services API.

Topics

Once your client application establishes a CometD session, you must create a subscription to one or
more of the CometD topics used by the Web Services API. Your subscriptions should be based on the
functionality available in your client application.

Topic

/v2/me/devices

/v2/me/calls

/notifications/services

Description

Messages related to devices.
Examples include changes to
agent state, do-not-disturb, call
forwarding, and supervisor
monitoring.

Messages related to calls.
Examples include changes to call
state, updates to call participant
information, and updates to call
data.

Messages relating to the state of
different services. If the
connection to T-Server is lost, or
T-Server's connection to the CTI
link is broken, a message is
delivered to the client.

MessageTypes

DeviceStateChangeMessage

ErrorMessage

CallStateChangeMessage

ErrorMessage

ServiceStateChangeMessage

Web Services APl Reference

44

API basics CometD notifications
Topic Description MessageTypes
Messages related to chats.
Examples include changes to
N2/me/chats chat state, updates to chat ChatStateChangeMessage

/v2/me/emails

/v2/me/facebook

/v2/me/facebooksession

/v2/me/im-sessions

/v2/me/openmedia

/v2/me/twitter

/v2/me/workbins

/v2/me/workitems

participant information, updates
to chat data, and updates to chat
transcript.

Messages related to emails.
Examples include changes to
email state and updates to email
data.

Messages related to Facebook
interactions. Examples include
changes to Facebook interaction
state and updates to Facebook
interaction data.

Messages related to private
Facebook messages. Examples
include changes to private
Facebook message state,
updates to private Facebook
message data, and updates to
private Facebook message
transcript.

Messages related to instant
messaging between agents.
Examples include changes to IM
session state and updates to IM
session data.

Messages related to OpenMedia
interactions. Examples include
changes to OpenMedia
interaction state and updates to
OpenMedia interaction data.

Messages related to Twitter
interactions. Examples include
changes Twitter interaction state,
updates to Twitter interaction
data, and updates to Twitter
account following.

Messages related to workbins.
Examples include changes to

workbin state and updates to

workbin contents.

Messages related to workitems.
Examples include changes to
workitem state and updates to
workitem data.

MessagelLogUpdated

EmailStateChangeMessage

FacebookStateChangeMessage

FacebooksessionStateChangeMessage

MessagelogUpdated

IMSessionStateChangeMessage

IMLogUpdateMessage

OpenmediaStateChangeMessage

TweetStateChangeMessage

TweetOperationResponse

WorkbinSubscriptionStateChangeMessage

WorkbinStateChangeMessage

WorkitemStateChangeMessage

Web Services APl Reference

45

API basics CometD notifications

Messages

[+] ServiceStateChangeMessage

ServiceStateChangeMessage

Property Description

The data element is present in all CometD
notifications and is the root JSON element. The

data data.messageType property can always be used to
identify the message and determine what other
properties should be present.

This property identifies the message type and will
have a value of ServiceStateChangeMessage.

A JSON object that describes the service the
notification relates to and its current state.

data.messageType

data.service

The type of service: Voice, Provisioning,
Reporting, MultiMediaState,

data.service.type MultiMediaContent, Chat, or Unknown. The Voice
APl requires only the Voice and Provisioning
services.

The state of the service: ReadOnly, Inactive,

data.service.state Heriuenorlnknon

channel The topic to which the message was published.

The following example message is received when the connection to T-Server is unavailable

"data": {
"messageType": "ServiceStateChangeMessage",
"service": {
"id": "370ef5e6-9e3c-4d91-9588-7f4dfe67e011",

"name": "SIPS",
"type": "Voice",
"state": "Inactive"
}
+
"channel": "/notifications/services"
}

This second example message is received when the connection to T-Server is restored.

{
"data": {
"messageType": "ServiceStateChangeMessage",
"service": {
"id": "370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"name": "SIPS",
"type": "Voice",
"state": "Active"
}
}I
"channel": "/notifications/services"
}

Web Services APl Reference 46

API basics Error handling

Error handling

Web Services API handles errors in two different ways, depending on the nature of the error and the
type of API.

If a requested operation can't be processed and sent to T-Server, the HTTP request returns an error
code with supporting error details. For example, you might see the following response when the T-
Server connection is unavailable:

HTTP 503
"statusCode":4,
"statusMessage": "Voice service is not available at this time"

}

For reference, a successful response looks like this:

HTTP 200
{
"statusCode": 0
h
Tip

Check out Return values for details about which status codes Web Services supports.

The other way the Web Services can handle errors is by delivering the error to the client
asynchronously using a CometD notification. For example, the Voice API returns a separate message
type called ErrorMessage, while the Twitter API returns the errorMessage property on its
TweetOperationResponse message. Details about specific error notifications are available on the
"CometD notifications" page in each Web Services API.

Web Services APl Reference 47

https://docs.genesys.com/Documentation/HTCC/latest/API/AsynchronousEvents

API basics Request Parameters

Request Parameters

This is part of the API Basics section of the Web Services API.

Overview

This outlines the request parameters for the Web Services API.

Object Fields

Requesting Devices

When making list requests for any kind of object, Web Services returns a list of the corresponding
object URlIs.

[+] Requesting Devices - Example

Request:

GET .../api/v2/me/devices
Response:

"statusCode" : 0,

"uris" : [
"http://127.0.0.1:8080/api/v2/devices/ba®@f987f-15b4-42c7-bed0-5f302259f9db"
1

Requesting a list of objects with their actual devices

In order to receive a list of objects with their actual fields, you will need to provide the fields
request parameter.

[+] Requesting a list of objects with their actual devices - Example

Request:
GET .../api/v2/me/devices?fields=*

Response:

Web Services APl Reference 48

API basics

Request Parameters

{ "devices" : [{ "capabilities" : ["ForwardCallsOn",
"DoNotDisturbOn"
]I
"deviceState" : "Active",
"doNotDisturb" : "Off",
"el64Number" : "5001",
"id" : "ba@f987f-15b4-42c7-bed0-5f302259f9db",
"phoneNumber" : "5001",
"telephonyNetwork" : "Private",
"userState" : { "displayName" : "Ready",
"id" : "9430250E-0A1B-421F-B372-F29E69366DED",
"state" : "Ready"
I
"voiceEnvironmentUri" : "http://127.0.0.1:8080/api/v2/voice-environments/a481lcd8e-7b6a-4466-af88-db3471ac909e"
1

"statusCode" : 0
}

Web Services APl Reference

49

API basics Request Parameters

Specify data fields when requesting an object

When requesting an object from the Web Services server, it is possible to specify which data fields
you receive by providing the fields request parameter.

[+] Specify data fields when requesting an object - Example
Request:

GET .../api/v2/queues/<queue id>?fields=id, name

Response:

{
"id":<queue id>,
"name" :<queue name>

Requesting all field of an object

To request all fields of an object, set the fields property to *.
[+] Requesting all field of an object - Example
Request:

GET .../api/v2/queues/<queue id>?fields=*

Response:

{
"id":<queue id>,
"name" :<queue name>,
"description":<queue description>,

Requesting Queues

Note that when making "list" requests for any kind of object, Web Services returns a list of the
corresponding object URIs.

[+] Requesting Queues - Example
Request:

GET .../api/v2/queues

Response:

{
"statusCode":0,

"uris": [

Web Services APl Reference 50

API basics Request Parameters

"http://.../api/v2/queues/<queue 1 id>",

;Hitp://.../api/v2/queues/<queue7Nfid>“

Request a list of objects with their actual fields

In order to receive a list of objects with their actual fields, you need to provide the fields request
parameter and have it set either to *, or to a list of data fields of interest.

[+] Request a list of objects with their actual fields - Example
Request:

GET .../api/v2/queues?fields=id, name

Response:

{
"statusCode":0,
"queues": [{
"id":<queue_ 1 id>,
"name" :<queue_1 name>

}I
{
"id":<queue N id>,
"name":<queue N _name>
11

Object Filtering

It is possible to filter objects using request parameters when doing "list" requests.
For example:

Request:

GET .../api/v2/queues?fields=id,name, channel&channel=voice

Response:

{
"statusCode":0,
"queues": [{
"id":<queue 1 id>,
"name" :<queue_ 1 name>,
“channel":"voice"

"id":<queue N id>,
"name" :<queue N name>,

Web Services APl Reference 51

API basics Request Parameters

"channel":"voice"

H

Important

Note that the filtering parameter must be exactly the same as the name of the
corresponding object field.

You can also combine several filtering parameters to make even more constraints:
Request:

GET .../api/v2/system/routing-templates?fields=*&channel=voice&version=1.0.0
Response:

{

"statusCode":0,

"routingTemplates": [{
"id":"00 RouteToSpecDestination",
"name":"Route Call to Specified Destination",
"description":"Routes calls to a skill or queue",
"version":"1.0.0",
"channel":"voice",
"dependencies":["media", "destination"],
"enabled":true,
"schema": [...]

+
{
"id":"07 SegmentCallerRouteToSpecDestination",
"name":"Play Greeting, Segment Caller, and Route To Specified Destination",
"description":"Plays a user-configured greeting, ...",
"version":"1.0.0",
"channel":"voice",
"dependencies":["media", "destination", "data record type"],
"enabled":false,
"schema": [...]
iy
)
Important
Note that some "list" requests may make some of the filtering parameters mandatory.
Pagination

The following pagination-related request parameters can be used with REST API requests.

Web Services APl Reference 52

API basics Request Parameters

Pagination and sorting functionality is only enabled if Elastic Search indexing is

enabled.
Name Description Request Resources Example
The following
Specifies the index requgst will return
of the first record it:(ihﬁersctoﬁ?gcltjsers
to be returned. All "plural"
offset GET resources center:
e Defaults to 0. GET /apiy/va)
users?offset=0&1imit=100
Specifies the
number of records The following
to be returned. request will return
the second page of
o * Maximum All "plural" 25 users in the
limit allowed value ~ GET resources contact center:
is 100.
, GET /api/v2/
e Default value is users?offset=25&limit=25
10.

Read requests with pagination return an extra field called totalCount containing the total count of
objects satisfying the request criteria.

{
"statusCode": 0O,
"users": [...],
"totalCount": 2
}

The following API resources support sorting and pagination:

* users

e groups/<id>/users

e contacts
Sorting
The following sorting-related request parameters can be used with REST API requests.
Name Description Request Resources Example
sortBy Specifies a comma GET /api/v2/

Web Services APl Reference 53

API basics Request Parameters

Name Description Request Resources Example

separated list of

object properties

to be used for

sorting. GET All

"plural" resources

The following users?sortBy=lastName, firstName&limit=100
request will sort

users by their last

names first and

then by their first

names:
The following
Specifies sorting request will return
order to be used, users sorted by
can be either Al "olural” their last names in
order "Ascending" or GET resoﬂrucr:s a descending
"Descending”, order:
defaults to)
"Ascending”. GET /api/v2/

users?sortBy=lastNameo=Descending&l:

Subresources

The subresources feature allows you to read subresources of an object together with the object itself.
If you have a user object that has one or more skills and one or more devices, you can read all skills
and devices of that user with the following request:

Request:

GET .../api/v2/users/<user _id>?subresources=*
Response:

{

"id":<user id>,
"firstName":<first name>,

"skills": [{
"id":<skill 1 id>,
}’
{
"id":<skill N id>,
1,

"devices":[{
"id":<device 1 id>,

}I

"id":<device M id>,

Web Services APl Reference 54

API basics Request Parameters

1]
}

If you do not include the subresources parameter in the request, you will get everything except the
"skills" collection and "devices" collection.

It is also possible to apply the subresources feature to object settings and request
both an object and its settings in one request.

Selecting Subresources
In the example above, "subresources=*" was specified in order to get all available subresources. If
the object you are interested in has several types of subresources, it is possible to choose whether

you want all subresources to be returned or just some of them. This can be achieved by specifying a
comma-separated list of subresources.

Example 1

To receive a list of skills and devices associated with an agent, use the following.
Request:

GET .../api/v2/users/<user id>?subresources=skills,devices

Response:

{

"id":<user id>,
"firstName":<first name>,

"skills": [{
"id":<skill 1 id>,
1,
{
"id":<skill N id>,
1,

"devices":[{
"id":<device 1 id>,

I

"id":<device M id>,

1]

Web Services APl Reference 55

API basics Request Parameters

Example 2

To receive a list of skills associated with an agent, use the following.
Request:

GET .../api/v2/users/<user id>?subresources=skills

Response:

{
"id":<user id>,
"firstName":<first name>,

"skills": [{
"id":<skill 1 id>,
}’
"id":<skill N id>,
}]

Resolving URIs

Introduction

This feature is called "resource link resolution", which allows you to read an object and all other
objects it is associated with in one request. For example, if we have a device object associated with a
phone number object and we want to read both of them in one request, we need to do the following:

Request:
GET .../api/v2/devices/<device id>?resolveUris=*
Response:

{
"id":<device id>,
"phoneNumberUri":"http://...",

;bﬁoneNumber”:{
"id":<phone number id>,

}

In comparison, if you do not include the "resolveUris" parameter in the request, you will get
everything except the "phoneNumber" object. In the example above, we specify "resolveUris=*" to
resolve all URIs. It is possible to choose whether you want all URIs to be resolved or just some of
them. This can be achieved by specifying a comma-separated list of property names referring to
URIs.

Web Services APl Reference 56

API basics Request Parameters

Examples
Example 1

To resolve all URIs, use "resolvelUris=*" as shown below.
Request:

GET .../api/v2/queues/<queue id>?resolveUris=*
Response:

{
"id":<queue id>,
"name" :<queue name>,

;%6utingTemplateUri":"http://...",
"phoneNumberUri":"http://...",

;bﬁoneNumber”:{
"id":<phone_number id>,

}I
"routingTemplate":{
"id":<routing template id>,

}

Example 2

To resolve a specific URI, use "resolveUris=<uri>" as shown below
Request:
GET .../api/v2/queues/<queue_id>?resolveUris=phoneNumberUri
Response:
{

"id":<queue id>,

"name" :<queue name>,

;;6utingTemplateUri":"http://...",
"phoneNumberUri":"http://...",

"phoneNumber": {
"id":<phone number id>,

}
Example 3

Request:

GET .../api/v2/queues/<queue_id>?resolveUris=phoneNumberUri, routingTemplateUri

Web Services APl Reference 57

API basics Request Parameters

Response:

{
"id":<queue id>,
"name" :<queue name>,

aééutingTemplateUri”:"http://...”,
"phoneNumberUri":"http://...",

"phoneNumber": {
"id":<phone number id>,

}I

"routingTemplate":{
"id":<routing template id>,

User Authentication

Basic HTTP Authentication is used. Please see RFC 2617 Section 2 for reference.

Supported Requests

The following requests are supported at this time:

e /devices: fields=*

o /features: fields=*

* /me: subresources=*

e /me/calls: fields=*

* /me/devices: fields=*

e /me/skils: fields=*

e /skills: fields=*

* /system/features: fields=*

e /system/routing-templates: channel, version (these are query parameters), fields=*
* /users: fields=*, subresources=*
e Jusers/{id}: subresources=*

* /users/{id}/devices: fields=*

e /recordings: startTime, endTime, callerPhoneNumber, dialedPhoneNumber, userName, offset, limit
(query parameters)

Web Services APl Reference 58

API basics Working with roles

Working with roles

GWS does not use standard Genesys access controls. Instead, it uses its own role-based security
based on Annex tab settings. The htcc/roles key must be defined in the Options of the Person
object that you use to connect to the API.

Example:

[htcc]
roles=supervisor

Role Description

Provides agent access. Agents are contact center
agent employees who handle calls, hold chats sessions,
or answer emails.

Provides supervisor access. A resource whose
primary role in the business consists in the direct
management of agents, and who, therefore, may

supervisor occasionally engage in the interaction-handling
process (for example, for coaching or emergency
purposes).
Provides administrator access. An employee in the
admin contact center who can create and edit other users,

create reason codes, and assign skills to
supervisors.

Provides the same level of access as an
administrator. Use this permission to designate an

apiuser "APl user" system account that is to be used by
other server applications and does not represent
an actual person.

You can link roles together as comma-separated values. For example:

[htcc]
roles=agent, supervisor,admin

Web Services APl Reference 59

API basics

Filtering

Filtering

This is part of the API Basics section of the Web Services API.

Overview

You can filter objects using request parameters when doing a 1ist request.

Example 1

Request

GET .../api/v2/queues?fields=id, name, channel&channel=voice
Response:
{
"statusCode":0,
"queues": [{
"id":<queue 1 id>,
"name" :<queue_1 name>,
"channel":"voice"

"id":<queue N id>,
"name":<queue N name>,
"channel":"voice"

H

Important

The filter parameter must be the same as the name of the corresponding object field.

Example 2

You may also combine several filtering parameters to make even more constraints.

Request

GET .../api/v2/system/routing-templates?fields=*&channel=voice&version=1.0.0

Web Services APl Reference

60

API basics Filtering
Response:
{
"statusCode":0,
"routingTemplates":[{
"id":"00 RouteToSpecDestination",
"name":"Route Call to Specified Destination",
"description”:"Routes calls to a skill or queue",
"version":"1.0.0",
"channel":"voice",
"dependencies":["media", "destination"],
"enabled":true,
"schema": [...]
}I
{
"id":"07 SegmentCallerRouteToSpecDestination",
"name":"Play Greeting, Segment Caller, and Route To Specified Destination",
"description":"Plays a user-configured greeting, ...",
"version":"1.0.0",
"channel":"voice",
"dependencies":["media", "destination", "data record type"],
"enabled":false,
"schema": [...]
iy
}
Important
Some list requests may require mandatory filter parameters.
Web Services API Reference 61

API basics Filtering and sorting users by fields and subresources

Filtering and sorting users by fields and
subresources

This is part of the API Basics section of the Web Services API.

Overview

This section provides additional details on the filtering functionality described in Pagination and
Subresources.

The limit parameter in this request is mandatory.

The request accepts comma-delimited list of fields as a sortBy parameter.

This allows an API user to specify multiple sorting fields so that sorting is done by the first field
specified, then by the second field specified, and so on.

Limitation: An APl user can specify the order (Ascending/Descending) for all fields at
once but it is not possible to specify ascending for first field, descending for the
second, or similar.

Example

Here is the sample request which returns users sorted by voice channel state and inside users with
same state sorted by lastName.

Tip

Default sort order is Ascending.

GET ...api/v2/

Web Services APl Reference 62

API basics Filtering and sorting users by fields and subresources

users?subresources=statistics&limit=100&sortBy=statistics.channels.voice.state, lastName

The list of user properties which can be used for filtering:

e firstName
e lastName
e userName
* enabled

* roles
The list of subresources fields what can be used for filtering:

Subresource Description

Search for user which has assigned device with
provided phone number. Please note that server

devices.phoneNumber stores for search purposes phone numbers in fixed
format which contains digits only, thus value
should not contain any non-digits.

Search for user(s) which have an assigned skill with

skills.name the name provided.

Search for users(s) which have assigned skills with

skills.level provided skillLevel.

Search for users with specified voice channel

states.
statistics.channels.voice.state

e Accepts a comma-delimited list of values.

for users with specified voice channel display
names.
statistics.channels.voice.displayNameSearch

e Accepts a comma-delimited list of values.

Search for users with specified voice channel
activites.
statistics.channels.voice.activity

e Accepts a comma-delimited list of values.

Search for users with specified voice channel

workModes.
statistics.channels.voice.workMode

e Accepts a comma-delimited list of values.

Here is the list of available sort fields:

¢ userName
e firstName
¢ lastName

e enabled

Web Services APl Reference 63

API basics Filtering and sorting users by fields and subresources

* roles

¢ devices.phoneNumber

e skills.name

 skills.level
 statistics.channels.voice.state
 statistics.channels.voice.activity
 statistics.channels.voice.displayName
« statistics.channels.voice.workMode

* statistics.<statisticName>.value

The statistics.<statisticName>.value is the value of simple statistic with name <statisticName>
as defined in statistics.yaml.

Web Services APl Reference 64

API basics Subresources

Subresources

This is part of the API Basics section of the Web Services API.

Overview

Web Services includes a feature called subresources, which allows reading the subresources of an
object.
Example - Show all subresources

For example, if we have a user object which has one or more skills and one or more devices
associated twith it, and we want to read all of those in one request we need to do the following:

Request
GET .../api/v2/users/<user id>?subresources=*
Response

{
"id":<user id>,
"firstName":<first name>,

"skills": [{
"id":<skill 1 id>,
}’
{
"id":<skill N id>,
1,

"devices":[{
"id":<device 1 id>,

I

"id":<device M id>,

11
}

If the subresources parameter is not included in the request, you receive everything except the
"skills" collection and "devices" collection.

Web Services APl Reference

65

API basics Subresources

It is also possible to apply subresources feature to object settings and request both an
object and its settings in one request.

Selecting Subresources

In the example above, we specify subresources=* to get all available subresources.
If the object we are interested in has several types of subresources, we can choose which

subresources to be returned. This could be achieved by specifying a comma-separated list of
subresources.

Example

Request
GET .../api/v2/users/<user _id>?subresources=skills,devices
Response

{
"id":<user id>,
"firstName":<first name>,

"skills": [{
"id":<skill 1 id>,
}’
"id":<skill N id>,
1,

"devices":[{
"id":<device 1 id>,

3
{
"id":<device M id>,

11
}
Example 2
Request
GET .../api/v2/users/<user _id>?subresources=skills

Web Services APl Reference 66

API basics

Subresources

Response

{
"id":<user _id>,
"firstName":<first name>,

"skills": [{
"id":<skill 1 id>,
}’
{
"id":<skill N id>,
}]

Filtering and Sorting by Subresource Properties

If an object has subresources, it is possible to filter and sort by their properties. For example: show all
users with skill "Sales". This could be achieved by using subresource name (for example "skills")

followed by a dot and its property (for example ".name").

Example - Sorting by Skill Name

Request

GET .../api/v2/users?subresources=skills&fields=id,userName&skills.name=Sales

Response

{

"statusCode": 0O,
"users": [{
"id": "3454353254324",

"userName": "cmburns@springfieldnclear.com",

"userName": "hsimpson@springfieldnclear.com,

"skills":[{
"id": "0890689",
"name": "Sales",
"level": 2
}
}I
{
"id": "3567365736736",
"skills":[{
"id": "0890689",
"name": "Sales",
"level": 4
}
11

Web Services APl Reference

67

API basics Subresources
Example 2
Request
GET .../api/v2/users?subresources=skills&fields=id,userName&sortBy=skills.levelo=Descending
Response
{
"statusCode": 0,
"users": [{
"id": "3567365736736",
"userName": "hsimpson@springfieldnclear.com,
"skills":[{
"id": "0890689",
"name": "Sales",
"level": 4
}
}I
{
"id": "3454353254324",
"userName": "cmburns@springfieldnclear.com",
"skills":[{
"id": "0890689",
"name": "Sales",
"level": 2
}
11
)
Web Services API Reference 68

API basics Return Values

Return Values

This is part of the API Basics section of the Web Services API.

Overview

All Web Services APl methods return a result for each operation in addition to the HTTP status code.
The results are different depending on the type of operation.

All Methods

All methods always return the statusCode attribute . If an error occurs, that is, if the statusCode is
not 0, the response includes error details in the statusMessage attribute.

The following status codes are supported:

Code Description
0 The operation is successful. No statusMessage is
provided.
1 A required parameter is missing in the request.
2 A specified parameter is not valid for the current
state.
3 The operation is forbidden.

An internal error occurred. This could occur if an
internal error occurred with Web Services or with

4 one of the servers working with Web Services (for
example: Cassandra or a Genesys Framework
component).

5 The user does not have permission to perform this
operation.

6 The requested resource could not be found.

The operation was partially successful. Returned if

7 at least one action in a bulk operation succeeded.
More information is available in the Partial Success
section.

8 Change password demanded. Web Services
requested a password change for the user.

9 Processing incomplete

10 Input validation error - the provided value is not

within the range of valid values
11 User requested to change read-only property

Web Services APl Reference 69

API basics

Return Valu

es

Code
12
13
14
15
16
17
18
19

20

Description
Unable to retrieve resource error
Unable to create resource error
Unable to delete resource error
Unable to update resource error
Unable to assign resource error
Unable to unassign resource error
Resource already exists
Resource already in use

User is not authenticated. Any subsequent request
should provide credentials

If an error occurs during an operation, the response includes statusCode and statusMessage to

clarify the error. No other attributes are included.

Note that if an error occurs during a request, you can assume that the request failed to modify the

data of the contact center.

GET

GET requests are used to retrieve a variety of information and the response body will depend on what
is being requested as well as the request parameters.

These are the possible scenarios:

1. If retrieving a collection of URIs, the response will include the array attribute uris which will hold the
requested collection and collection or relative uris with array attribute paths.

2. If retrieving a collection of resources, the response will include an array attribute named after the
requested resource (for example: GET /users?fields=* will contain "users":[{..userl..},

{...user2...}, and so forth]

3. If the URI is a singular resource (for example: GET /users/{id}) the response will include an attribute
named after the singular of the requested resource which will contain the requested value. (for
example: GET /users/{id} will return "user":{...user..})

Example

If retrieving a collection of URIs, the response will include the array attribute uris which will hold the

requested collection.

GET /skills
{
"statusCode": 0,
"uris": [
"http://../api/v2/skills/123",
"http://../api/v2/skills/456",

Web Services APl Reference

70

API basics Return Values

]I

"paths": [
"/skills/123",
"/skills/456",

Example

If retrieving a collection of resources, the response will include an array attribute named after the
requested resource. For example, GET /users?fields=* will contain "users":[{..userl..},
{...user2...}, etc].

GET .../users?fields=*

{
"statusCode":0,
"users":[
{

"userName":"..",
"firstName":"...",
etc},

}
{
"userName":"..",
"firstName":"...",
etc

}
]

Example

If the URI is a "singular" resource such as GET /users/{id}, the response includes an attribute
named after the singular form of the requested resource. This attribute contains the requested value.
For example, GET /users/{id} will return "user":{...user..}.

GET /devices/{id}

{
"statusCode": 0O,
"device": {
"vendor": " ",
"phoneNumber": "...",
}
}

POST to Create Resource

When a POST request is successful, the following extra attributes will be included:

1. id—the ID of the newly-created object.

2. uri—The URI to access the newly-created object.

Web Services APl Reference 71

API basics Return Values

3. path—The relative URI to access the newly created object.

Example

Request:

POST /users

{

... some user data

}

Response:

{
"statusCode":0
"id":"12345",
"uri":"http://...api/v2/users/12345"
"path": "/users/12345"

}

POST to Assign Resource

POST can also be used to assign one resource to another's collection, such as when assigning a skill
to a user. When this is the case, no extra attributes are returned and only statusCode: 0 will be
returned on success.

DELETE

The DELETE operation does not have any extra attributes. Only statusCode: 0 will be returned on
success.

DELETE to Unassign Resource

DELETE can also be used to unassign one resource from another's collection, such as when
unassigning a skill from a user. No extra attributes are returned and only statusCode:0 will be
returned on success.

PUT

The PUT operation does not have any extra attributes. Only statusCode:0 will be returned on
success.

Web Services APl Reference 72

API basics Return Values

Asynchronous Operations

Web Services supports many operations that are performed using POST on an existing resource and
the response for which is sent via CometD. When POST is used to perform one of these operations,
statusCode: 0 will be returned on success.

Hybrid Operations

In order to increase API usability and minimize network traffic, multi-step operations are occasionally
implemented. For instance, it is possible to create a device and assign it to a user with one operation.
When hybrid operations are implemented, the methods will return all of the values required for each
operation being performed. For example, POST to create a resource requires a return value of "uri"
and "id" whereas POST to assign does not have any extra return values. Implementing a multi-step
“create and assign" POST returns "uri®, "id", and "statusCode" on successful completion.

Partial Success

Some operations may be considered successful if they are able to perform some of their work. These
operations are considered "bulk" operations and are different from "transactions", which involve
multiple steps that possibly use multiple servers. An example of a transaction is "create user" which
involves creating some data in Cassandra as well as Configuration Server. If one of these actions fails,
Web Services considers the whole operation a failure. In contrast, an operation such as "assign
multiple skills to user" is a bulk operation which consists of a series of transactions (for example,
each individual skill assignment is a transaction). The general rule is that if a step of a transaction
fails, Web Services considers the whole operation a failure. If at least one transaction in a bulk
operation succeeds, Web Services considers this a "partial success." Note that for bulk GETs (for
example, GET /users) if the result is a partial list, the response includes statusCode:7 instead of 0.
The rest of the result looks the same. For POST, PUT, and DELETE, the partial success returns have
the following attributes:

Attribute Value
statusCode Always 7

An array of resource descriptors (see below). Each
succeeded represents a resource for which the transaction was
successful.

An array of failure descriptors (see below). Each
failed represents a resource for which the transaction
failed.

Attribute Value

The URI of a resource from request parameters for
which the transaction succeeded. For example, if

ur assigning multiple skills to a user, this is the URI of
a skill).
path The relative path of the resource

Web Services APl Reference 73

API basics

Return Values

Attribute
id
Attribute
<uids>
statusCode
statusMessage
Examples
Assign:
POST /users/{id}/skills
{
"uris":["uril", "uri2"], "paths": ["uri3"]
}
{
"statusCode":7 (partial success)
"succeeded": [
{
"id":<idl>,
"uri":"uril",
"path":"pathl",
}I
{
"id":<id2>,
"Uri“ : ”Uriz“ i
"path":"path2"
11
"failed": [
{
"statusCode": X,
"statusMessage":"msg",
"Uri“ : ||ur.i3u E
"path": "path2"
b
1
}
Create:
POST /users
{
"users": [
{
"firstName":"..",
"lastName":"..",
"userName":"ul", etc
1
{

"firstName":"..",

The unique identifier of the resource above.

The attributes which uniquely identify the resource
for which this transaction failed. For example, if
assigning skill uris, this will be "uri." If creating a
user this will be "userName." If a resource has
more than one identifying attribute all should be

The status code describing the reason for failure.

The message describing the reason for failure.

Web Services APl Reference

74

API basics

Return Values

"lastName":"..",

"userName":"u2", etc

"firstName":"..",

"lastName":"..",

"userName":"u3", etc

"statusCode":7 (partial success)

"succeeded": [

{

H

"failed": [
{

H
}

Delete:

DELETE /users

"id":<id>,
"uri":"uril",
Ilpathll : Ilpathll
||id|| :<id>,
"uri":"uri2",
"path":"path2"

"statusCode":3,

"statusMessage":"Operation forbidden,

"userName" :"u3"

"uri2"],"paths":

"statusCode":7 (partial success)

{
"uris":["uril",
}
{
"succeeded": [
{
}I
{
1
"failed": [
{
11
)

"id":<id1l>,

"uri":"uril",
"path":"pathl"

"id":<id2>,

"uri":"uri2",
"path": "path2"

"statusCode": X,

"statusMessage":

"uri":"uri3",
"path": "path2"

["uri3"]

username already exists",

Web Services APl Reference

75

API basics Recovering Existing State

Recovering Existing State

This is part of the API Basics section of the Web Services API.

Overview

Often with voice interactions there is an existing state prior to the client application starting. This
could be caused by a failover/recovery scenario or because the agent logged in and started using a
physical device prior to opening the application.

The Web Services API provides several means for client applications to discover existing state. For
voice applications, the key state to be examined are the state of any devices assigned for the current
user and any active calls.

These details can either be queried independently or in one request as shown in the examples below.
Once any existing device and call state has been recovered, the application is able to update their Ul

appropriately and move forward with processing of new unsolicited messages and agent initiated
actions.

Examples
[+] Reading existing device state

Reading existing device state

The current state of any devices assigned to the current user can be read by sending a GET request
to api/v2/me/devices?fields=*:

Web Services APl Reference 76

API basics

Recovering Existing State

GET api/v2/me/devices?fields=*
{

"statusCode": 0,
"devices": [
{
"id": "9cld4cad7-17c4-48d0-8492-7cfoff92c224",
"deviceState": "Active",
"userState": {
"id": "900D55CC-2BB0O-431F-8BF9-D3525B383BE6",
"displayName": "Not Ready",
"state": "NotReady"
}I
"phoneNumber": "5001",
"el64Number": "5001",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [
"ForwardCallsOn"
1
}
1
}

Web Services APl Reference

77

API basics Recovering Existing State

[+] Reading active calls

Reading active calls

The active calls for the current user can be read by sending a GET request to api/v2/me/
calls?fields=*:

{
"statusCode": 0O,
"calls": [
{

"id": "007102385535e€008",

"state": "Established",

"callUuid": "011DJV5]I898NB2L0400OVTAESO00008",

"deviceUri": "http://127.0.0.1:8080/api/v2/devices/
9cl4cad7-17c4-48d0-8492-7cfoff92c224",

"uri": "http://127.0.0.1:8080/api/v2/me/calls/007102385535e008",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"5000",
"phoneNumber":"5000",
"digits":"5000"

}

]I

"dnis": "5001",

"callType": "Internal",

"capabilities": [
"AttachUserData",
"InitiateConference",
"UpdateUserData",
"Hold",
"SingleStepTransfer",
"DeleteUserData",
"SingleStepConference",
"Hangup",
"DeleteUserDataPair",
"SendDtmf",
"InitiateTransfer"

1,

"duration": "363",

"mute": "Off",

"supervisorListeningIn": false,

"monitoredUserMuted": false

[+] Reading device state and active calls together

Reading device state and active calls together

This example shows the results of getting all information for the current user.

Web Services APl Reference 78

API basics Recovering Existing State

This includes both device state and active calls in one request, but also includes other details, such
as settings and skills.

Web Services APl Reference 79

API basics

Recovering Existing State

GET api/v2/me?subresources=*

"statusCode": 0O,
"user": {
"id": "8eb52b0724344f67a44389db5aa5f192",
"userName": "jsmith@uppercape.ca",
"firstName": "John",
"lastName": "Smith",
"roles": [
"ROLE_AGENT"
]I
"devices": [
{
"id": "9cl4cad7-17c4-48d0-8492-7cfOff92c224",
"deviceState": "Active",
"userState": {
"id": "900D55CC-2BBO-431F-8BF9-D3525B383BE6",
"displayName": "Not Ready",
"state": "NotReady"
}l
"phoneNumber": "5001",
"el64Number": "5001",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",

"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/370ef5e6-9e3c-4d91-9588-7f4dfe67e011",

"capabilities": [
"ForwardCallsOn"
]
}
]l
"skills": [1],
"settings": {
"htcc": {
"roles": "Agent"
}I
"provisioning flags": {
"modified At": "4c3fccdb-f942-4c99-a823-6cab68852ef7"
}
}I

"calls": [

"id": "007102385535e008",

Web Services APl Reference

80

API basics

Recovering Existing State

"state": "Established",

"callUuid": "011DJV5]I898NB2L040OOVTAESO00008",

"deviceUri": "http://127.0.0.1:8080/api/v2/devices/9cl4cad7-17c4-48d0-8492-7cfoff92c224",
"uri": "http://127.0.0.1:8080/api/v2/me/calls/007102385535e008",

"participants":[

"el64Number":"",
"formattedPhoneNumber":"5000",
"phoneNumber":"5000",
"digits":"5000"

}

]I

"dnis": "5001",

"callType": "Internal",

"capabilities": [
"AttachUserData",
"InitiateConference",
"UpdateUserData",
"Hold",
"SingleStepTransfer",
"DeleteUserData",
"SingleStepConference",
"Hangup",
"DeleteUserDataPair",
"SendDtmf",
"InitiateTransfer"

]I

"duration": "5",

"mute": "Off",

"supervisorListeningIn": false,

"monitoredUserMuted": false

}
]I
"changePasswordOnFirstLogin": false
}
}

Web Services APl Reference

81

API basics Toast and case data

Toast and case data

This is part of the API Basics section of the Web Services API.

Overview

Web Services provides two different optional filtered subsets of the data found in the userData
property of the call resource. Toast data is intended to be used for screen-pop (or "toast") and is
included for ringing or dialing calls. Case data is included for established calls and is intended to
represent the business-relevant subset of data included on the call.

The set of data that is included in the toast and case properties of the call resource are configured
using the toast-filter and case-filter voice settings.

In addition to the key and value properties entries in the toast and case properties include the
displayName property configured in the filter. The overall intention is to provide APl users all the
information required to build a toast/popup and/or call data display without having to manage
filtering and metadata on their own.

See the sections below for examples of configuring the toast-filter and case-filter settings as
well as call resource examples that include the toast and case properties.

Tip
The userData property of the call resource will always contain the full set of data
related to the call, regardless of whether a toast/case filter has been configured.

Toast Data

Toast data is intended to support screen pop or "toast" Ul elements that alert the agent to a new call.
Any desired set of toast data can be configured using the toast-filter setting. It is common to
configure a minimal subset of the business data to allow the agent to see the information required to
greet the customer.

If a toast-filter is configured, the toast property is provided on the call resource when a call is in
the Ringing or Dialing state.

Examples

[+] Reading voice settings

Web Services APl Reference 82

API basics

Toast and case data

Request:
GET http://127.0.0.1:8080/api/v2/settings/voice
Response:
{ "key" : "name",
"settings" : [{ "name" : "case-filter",
"value" : [{ "attachedDataKey" : "CustomerName",
"displayName" : "Customer"
}I
{ "attachedDataKey" : "POC",
"displayName" : "Purpose of Call"
|
}l
{ "name" : "toast-filter",
"value" : [{ "attachedDataKey" : "CustomerName",
"displayName" : "Customer"
I
}

]I
"statusCode" : 0

}

[+] Setting a toast-filter
Request

POST /api/v2/settings/voice
{

"name": "toast-filter",
"value": [
"attachedDataKey": "CustomerName",
"displayName": "Customer"
1
}
Response

{ "statusCode" : 0 }

[+] Notification

"data": {
"messageType": "CallStateChangeMessage",
"notificationType": "StatusChange",
"call": {

"id": "O1LNOSKNPBBAT3D4MUTCJI82LAES000120",

"connId": "0072026cb98d140f",

"state": "Ringing",

"callUuid": "©1A4HVK9AGOCP40B0400OVTAESOOOO1A",

"deviceUri": "http://127.0.0.1:8080/api/v2/devices/
d41b41c3-33fa-4051-a650-511c6a2e2131",

"uri": "http://127.0.0.1:8080/api/v2/me/calls/0071023c62a4a02a",

"participants": [

Web Services APl Reference

83

API basics

Toast and case data

{
"el64Number":"",
"formattedPhoneNumber"
"phoneNumber":"5005",
"digits":"5005"
b
]I
"dnis": "5000",

"callType": "Internal",

"capabilities": [
"DeleteUserDataPair",
"AttachUserData",
"Answer",
"DeleteUserData",
"UpdateUserData",
"StartCallRecording"

]I

"userData": {
"POC": "New Service",
"CustomerName": "Chris"

}l

"toast": [

"key": "CustomerName",
"displayName": "Customer",
"value": "Chris"
}
]!
"duration": "O",
Ilmutell: lloff“,
"recordingState": "Stopped",
"supervisorListeningIn": false,
"monitoredUserMuted": false,
"monitoring": false

}I
"phoneNumber": "5000"
}I
"channel": "/v2/me/calls"
}
Case Data

:"5005",

Case data is intended to provide a business-relevant set of call data that APl developers can use to
populate a call data user interface. Case data is only provided after the agent has accepted the call
and it is in the Established state. The set of userData to be included in the case property can be

configured via the case-filter setting as shown in the examples below.

Examples

[+] Setting a case-filter

Request

POST /api/v2/settings/voice

{

"name": "case-filter",
"value": [

Web Services APl Reference

84

API basics

Toast and case data

{
"attachedDataKey": "CustomerName",
"displayName": "Customer"
}I
{
"attachedDataKey": "POC",
"displayName": "Purpose of Call"
]
}
Response

{ "statusCode" : 0 }

Notification

"data": {

"messageType": "CallStateChangeMessage",
"notificationType": "StatusChange",

"call":
IIidll :

{

"O1NOSKNPB8AT3D4MUTCI82LAES000120",

"connId": "0072026ch98d140f",
"state": "Established",

"callUuid":
"deviceUri":

d41b41c3-33fa-4051-a650-511cba2e2131",

"uri':

"http://127.0.0.1:8080/api/v2/me/calls/0071023c62a4a02a"

"participants": [

{
"el64Number":"",
"formattedPhoneNumber":"5005",
"phoneNumber":"5005",
"digits":"5005"
}
]I
"dnis": "5000",

"callType": "Internal",

"capabilities": [
"DeleteUserDataPair",
"SingleStepTransfer",
"AttachUserData",
"Hold",
"InitiateTransfer",
"Hangup",
"InitiateConference",
"DeleteUserData",
"SingleStepConference",
"UpdateUserData",
"SendDtmf",
"StartCallRecording"

] ’

"userData": {
"POC": "New Service",
"CustomerName": "Chris"

}'

"duration": "4",

"mute":

||0ff|| ,

"01A4HVK9AGOCP40BO40OOVTAESOOO0O1A",
"http://127.0.0.1:8080/api/v2/devices/

"recordingState": "Stopped",
"supervisorListeningIn": false,
"monitoredUserMuted": false,
"monitoring": false,

Web Services APl Reference

85

API basics

Toast and case data

"case": [
{
"key": "CustomerName",
"displayName": "Customer",
"value": "Chris"
}I
{
"key": "POC",
"displayName": "Purpose of Call",
"value": "New Service"
}
1
}I
"phoneNumber": "5000"
}I
"channel": "/v2/me/calls"
}

Web Services APl Reference

86

API basics Disposition codes

Disposition codes

This is part of the API Basics section of the Web Services API.

Overview

Web Services provides a means for clients to read and manage disposition codes. Disposition codes
are a set of possible outcomes for a call that the agent can select from. These are typically business-
specific, but can include things like whether the customer issue was resolved, or whether the
customer purchased the service/product being offered.

The APIs provide for disposition codes are intended to allow clients to read the set of possible codes
so that they can be displayed to the user. When a disposition code is selected, it can be set for a
specific call.

Examples

The examples below show how to manage the set of possible disposition codes available to the
agent.

Create a new disposition code

Request:
POST /api/v2/settings/dispositions
{
"name": "IssueResolved",
"displayName": "Issue Resolved"

}
Response:

{ "statusCode" : 0 }
Update an existing disposition code

Request:

PUT /api/v2/settings/dispositions
{
"name": "IssueResolved",
"displayName": "Resolved"

}
Response:

{ "statusCode" : 0 }

Web Services APl Reference 87

API basics Disposition codes

Delete a disposition code

Request:
DELETE /api/v2/settings/dispositions
{

"name": "IssueResolved"

)
Response:

{ "statusCode" : 0 }
Read all defined disposition codes

Request:

GET /api/v2/settings/dispositions

Response:
{ "key" : "name“,
"settings" : [{ "displayName" : "Issue Escalated",
"name" : "EscalationCreated"
}I
{ "displayName" : "Issue Resolved",
"name" : "IssueResolved"
}I
{ "displayName" : "Update Provided",
"name" : "UpdateProvided"
}I
{ "displayName" : "Information Requested",
"name" : "InfoRequested"
}

] ’
"statusCode" : 0

}

Web Services APl Reference 88

API basics Cross-Origin Resource Sharing

Cross-0Origin Resource Sharing

This is part of the API Basics section of the Web Services API.

Overview

Cross-Origin Resource Sharing (CORS) is a specification that enables open access across domain-
boundaries.

Each contact center can define their own allow origin list through Web Services access control
settings.

Web Services will filter an incoming request by merging global allowOrigins and contact center
access control settings by using an Admin account.

Operations

The following operations are available for this group:

Operation Description Permissions
GET Retrieves an array of settings Contact Center Admin

Creates a new setting in this
POST group. allowedOrigins is the Contact Center Admin
only valid setting.

PUT Updates a setting. Contact Center Admin
DELETE Removes a setting. Contact Center Admin
Settings
Attribute name Description

An array of valid "origins" for this contact center.
allowedOrigins The CORS filter will use this list to validate
incoming requests.

Tip

Wildcards are allowed in the context of a domain name for allowedOrigins, but "*"

Web Services APl Reference 89

API basics Cross-Origin Resource Sharing

by itself is not permitted.

Examples

Retrieve access control settings

GET /settings/access-control {
settings:|[
{
“name”:”allowedOrigins”,
“value”: ["https://cloud.genhtcc.com", "https://*.genhtcc.com"]
}
]

Add "genesys.com" to the list of domains

PUT /settings/access-control {

settings:
{

“name”:”allowedOrigins”,

“value”: ["https://cloud.genhtcc.com", "https://*.genhtcc.com", "https://*.genesys.com"]
)

Important
When sending the above, the entire array must be sent

Web Services APl Reference 90

API basics Cross-Site Request Forgery protection

Cross-Site Request Forgery protection

Web Services provides protection against Cross-Site Request Forgery (CSRF) attacks by requiring a
token in a custom header for all requests that modify data: PUT, POST, DELETE. Web Services
generates and stores this token along with the HTTP session. The token shares the life cycle of the
HTTP session.

See CSRF protection for details about how to enable this security feature.

To get the CSRF token and the expected header name from Web Services, just send a GET request —
for example, /api/v2/me. The expected header name and token value are returned in two custom
headers on the HTTP response: X-CSRF-HEADER and X-CSRF-TOKEN.

X-CSRF-HEADER: X-CSRF-TOKEN
X-CSRF-TOKEN: 4a92be65-ec55-4aa2-b9df-9518fd870f2f

You must cache the values of these headers because you'll need to use them on subsequent API
requests that use PUT, POST, and DELETE so that Web Services doesn't think the request is coming
from a third party. For instance, when you attempt to perform the StartContactCenterSession
operation, you need include an HTTP header of X-CSRF-TOKEN with the corresponding value:

POST https://htcc-demo.genhtcc.com/api/v2/me HTTP/1.1

Authorization: Basic <credentials>

X-CSRF-TOKEN: 4a92be65-ec55-4aa2-b9df-9518fd870f2f

Accept: application/json, application/xml, text/json, text/x-json, text/javascript,
text/xml

User-Agent: RestSharp/105.2.3.0

Content-Type: application/json

Host: htcc-demo.genhtcc.com

Cookie: JSESSIONID=sngukrzemiyxchpu5isbufmm;
AWSELB=854B09E30CD5CEDDEDA518240935B76DEAC5D82EC5038C4B8F22CD5165FF21C65BC292BADO5CEEB
17D7500F4A489957FB3A5C23BD0O9BC31CAF09526FCBEFD7CE491CD7E5B3

Content-Length: 88

Accept-Encoding: gzip, deflate

{
"operationName": "StartContactCenterSession",
"channels": [
"voice"
]
}

If you don't have that header in place, Web Services returns an HTTP 403 error with a response in the
Content of "Missing or invalid Csrf token".

Cookie support

In addition to the CSRF feature, Web Services also requires your application to support cookies,
specifically for the JSESSIONID cookie value that it returns. Without a cookie store, Web Services
returns the same HTTP 403 error with a message of "Missing or invalid Csrf token", even if the X-
CSRF-TOKEN is specified in the HTTP Header. This is because it can't confirm that the X-CSRF-TOKEN
you specify lines up with the JSESSIONID that the token is supposed to be tied to.

Web Services APl Reference 91

https://docs.genesys.com/Documentation/HTCC/latest/Dep/CSRFProtection

API basics Cross-Site Request Forgery protection

Read on for some sample requests and examples of how to implement CSRF protection:

Authorized request returning token headers

Request

GET /api/v2/me

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 9 3) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/35.0.1916.153 Safari/537.36

Authorization: Basic cGF2ZWxkQHJ1ZHdpbmdzLmNvbTpwYXNzd29yZA==

Accept: */*

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Cookie: JSESSIONID=hac082exio454jcgk6ieqm4j

Response

200 - OK

Date: Mon, 23 Jun 2014 02:00:15 GMT

X-CSRF-HEADER: X-CSRF-TOKEN

Set-Cookie: JSESSIONID=1h49t997p4mgclel@8bz0Ocjntr;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
X-CSRF-TOKEN: e2fcfafd-c600-4156-88ae-ca56babd24el
Pragma: no-cache

Cache-Control: no-cache

Cache-Control: no-store

Content-Type: application/json

Transfer-Encoding: chunked

POST request including CSRF token

Request

POST /api/v2/me

Origin: chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo

X-CSRF-TOKEN: e2fcfafd-c600-4156-88ae-ca56babd24el

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10 9 3) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/35.0.1916.153 Safari/537.36

Content-Type: application/json

Accept: */*

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Cookie: JSESSIONID=1h49t997p4mgclel08bzOcjntr

{ "operationName": "Ready" }

Response

200 - OK

Date: Mon, 23 Jun 2014 02:02:51 GMT
Pragma: no-cache

Cache-Control: no-cache

Web Services APl Reference 92

API basics

Cross-Site Request Forgery protection

Cache-Control:

no-store

Content-Type: application/json
Transfer-Encoding: chunked
Server: Jetty(8.1.14.v20131031)

{ "statusCode": 0 }

JavaScript example

<html>

<head>

<script type="text/javascript" src="./org/cometd.js"></script>

<script type="text/javascript" src="./org/cometd/ReloadExtension.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/

jquery.min.js"></script>

1)

<script src="./jquery.cometd.js"></script>
<script>

1177717777771 77777777777777777777777777/77777777777777777777/777/7/77777//7777/7777
// Initialization

/177777777771 77777777777777777777777777/7/7777777777777777777/777/777777//7777/7777
var baseUri = 'http://127.0.0.1:8080";

var username = 'paveld@redwings.com';

var password = 'password';
var csrfHeaderName;
var csrfToken;

var cometd;

$.ajaxSetup({

beforeSend: function(xhr) {

if (csrfHeaderName && csrfToken) {
xhr.setRequestHeader(csrfHeaderName, csrfToken);
}

$(document) .ready(function() {
$('#getMeButton').click(getMe);
$('#startCometdButton').click(connectCometD);
$('#startSessionButton').click(startContactCenterSession);
$('#readyButton').click(ready);
$('#stopCometdButton').click(disconnectCometD);
$('#endSessionButton').click(endContactCenterSession);

cometd = $.cometd;

cometd.addListener('/meta/handshake', onHandshake);
cometd.addListener('/meta/connect', onConnect);

cometd.addListener('/meta/disconnect', onDisconnect)

$(window) .unload(function() {
cometd.disconnect();
1)

1)

111117717777 7777777777777777777777777777777777777/7777/77/77777/7/77/7/777/77//777
// HTTP Helpers

Web Services APl Reference 93

API basics Cross-Site Request Forgery protection

/177777777777 77777777777777777777777777/7777777/77777777777/7/777/7/7/77777/7777/7777
var get = function(params)
{
var request = {
url: baseUri + params.uri,
type: 'GET',
crossDomain: true,
xhrFields: {
withCredentials: true
}I
success: function (data, textStatus, response) {
console.log(response.getAllResponseHeaders());

if (response.getResponseHeader('X-CSRF-HEADER') &&

response.getResponseHeader('X-CSRF-TOKEN')) {
csrfHeaderName = response.getResponseHeader('X-CSRF-HEADER');

csrfToken = response.getResponseHeader('X-CSRF-TOKEN');

console.log('csrfHeaderName: ' + csrfHeaderName);
console.log('csrfToken: ' + csrfToken);

}

if (params.callback) {
params.callback(data);
}
}I

error: function (result) {
console.log(result);
if (params.error) {

}

params.error(result);

+;

if (params.includeCredentials) {
request.beforeSend = function (xhr) {
xhr.setRequestHeader('Authorization', 'Basic ' +

window.btoa(username + ':' + password));

+;
}

$.ajax(request);

’

var post = function(params)

{

var data = JSON.stringify(params.json, undefined, 2);

var request = {
url: baseUri + params.uri,

type: 'POST',
data: data,
headers: {
'Content-Type' : 'application/json'
}I

crossDomain: true,
xhrFields: {
withCredentials: true
}I
handleAs: 'json',
success: function(data) {
if (params.callback) {

Web Services APl Reference 94

API basics Cross-Site Request Forgery protection

params.callback(data);

}
I
error: function (req, err, exception) {
console.log('Error! (' + reqg.status + ') : ' + err +
if (params.error) {

}

+ exception);
params.error(result);

}
}

$.ajax(request);

}

[1177/77777777777/7/777/7/7/77777///7777/77
// API Functions
[1177171777777777777777777777777777777/7/77/77/777777/7/7777777777/7/777/77777777/7/7777/777
var getMe = function() {

get({
uri: '/api/v2/me',
includeCredentials: true
I3
+
var startContactCenterSession = function() {
post({
uri: '/api/v2/me’,
json: {
operationName: 'StartContactCenterSession',
channels: ['voice']
b
1)
+
var ready = function() {
post({
uri: '/api/v2/me',
json: {
operationName: 'Ready'
b
1)
};
var endContactCenterSession = function() {
post({
uri: '/api/v2/me',
json: {
operationName: 'EndContactCenterSession'
}I
callback: onEndContactCenterSessionComplete
1)
Iy

1177777777771 77777777777777777777777777/7777777777777777777/7/777/777777//7777/7777
// Callbacks
1177777777771 77777777777777777777777777/77777777/77777777777/7/777/777777//7777/7777
var onEndContactCenterSessionComplete = function() {

csrfHeaderName = null;

csrfToken = null;

}

/1777177777771 77777777777777777777777777/7777777/777777777777/77777/77777///777/7/777
// CometD

Web Services APl Reference 95

API basics Cross-Site Request Forgery protection

[11777

var connected = false;
var subscription;

var onConnect = function(message) {
if (cometd.isDisconnected()) {
return;
}

var wasConnected = connected;

connected = message.successful;

if (!wasConnected && connected) {
console.log('Cometd connected.');

} else if (wasConnected && !'connected) {
console.log('Cometd disconnected...');

}

Iy
var onDisconnect = function(message) {
if (message.successful) {

connected = false;
console.log('Cometd disconnected.');

s

var onMessage = function(message) {
console.log('Cmetd message received:\n' + JSON.stringify(message,

null, 2));
+
var onHandshake = function(handshake) {
if (handshake.successful === true) {
if (subscription) {
console.log('unsubscribing: ' + subscription);
cometd.unsubscribe(subscription);
}
console.log('Subscribing to channels...');
subscription = cometd.subscribe('/v2/me/*', onMessage);
}
Iy

var connectCometD = function() {

var reqHeaders = {};
reqHeaders[csrfHeaderName] = csrfToken;

cometd.unregisterTransport('websocket');
cometd.unregisterTransport('callback-polling');
cometd.configure({
url: baseUri + '/api/v2/notifications’,
logLevel: "info",
requestHeaders: reqHeaders
s

cometd.handshake();
+

var disconnectCometD = function() {
cometd.disconnect();
+

Web Services APl Reference 96

API basics Cross-Site Request Forgery protection

</script>
</head>
<body>
<button id='getMeButton'>Get Me</button>

<button id='startCometdButton'>Start CometD</button>
</br>
<button id='startSessionButton'>Start Contact Center Session</button>

<button id='readyButton'>Ready</button>

<button id='stopCometdButton'>Stop CometD</button>
</br>
<button id='endSessionButton'>End Contact Center Session</button>

</body>
</html>

Python example

import base64;
import httplib2;
import json;

GWS_BASE_URI =
ADMIN USERNAME
ADMIN_PASSWORD

"http://127.0.0.1:8080/api/v2"
"mikeb@redwings.com"
"password"

CONTACT CENTER USERS = [

{
"userName": "bobp@redwings.com",
"firstName": "Bob",
"lastName": "Probert",
"password": "password",
"phoneNumber": "5019",
"role": "ROLE AGENT"

}

]

X CSRF_HEADER = "x-csrf-header"
X _CSRF_TOKEN = "x-csrf-token"

jsessionid = None
csrfHeaderName
csrfTokenValue

None
None

http = httplib2.Http(".cache")

def create request headers():

request headers = dict()

request headers["Content-Type"] = "application/json"

request headers["Authorization"] = "Basic " + base64.b64encode(ADMIN USERNAME + ":" +
ADMIN PASSWORD)

if jsessionid:
request headers["Cookie"] =
print "Using JSESSIONID %s"

jsessionid;
% jsessionid;

if csrfHeaderName and csrfTokenValue:
print "Adding csrf header [%s] with value [%s]..." % (csrfHeaderName, csrfTokenValue)

Web Services APl Reference 97

API basics

Cross-Site Request Forgery protection

def

def

print

request headers[csrfHeaderName] = csrfTokenValue
else:

print "No csrf token, skipping..."

print

return request headers

post(uri, content):
request headers = create request headers()
body = json.dumps(content, sort keys=True, indent=4)

print "POST %s (%S/%S)..." % (uri, ADMIN USERNAME, ADMIN PASSWORD)
print body
print

response _headers, response content = http.request(uri, "POST", body = body, headers =
request headers)

status = response headers["status"]

ugly response = json.loads(response content)
pretty response = json.dumps(ugly response, sort keys=True, indent=4)

print "Response: %s" % (status)
print "%s" % (pretty response)
print

return response headers, ugly response
get(uri):

global csrfHeaderName

global csrfTokenValue

global jsessionid

request headers = create request headers()

print "GET %S (%S/%S)..." % (uri, ADMIN USERNAME, ADMIN PASSWORD)
print

response headers, response content = http.request(uri, "GET", headers

status = response headers["status"]

if response headers|["set-cookie"]:
jsessionid = response headers["set-cookie"]
print "Set JSESSIONID %s..." % jsessionid

ugly response = json.loads(response content)
pretty response = json.dumps(ugly response, sort keys=True, indent=4)

print "Response: %s" % (status)
print "%s" % (pretty response)
print

if X CSRF_HEADER in response headers:
csrfHeaderName = response headers[X CSRF HEADER]
print "Saved csrf header name [%s]" % csrfHeaderName

if X CSRF_TOKEN in response headers:
csrfTokenValue = response headers[X CSRF_TOKEN]
print "Saved csrf token value [%s]" % csrfTokenValue
print

return response_headers, ugly response

request headers)

Web Services APl Reference

98

API basics

Cross-Site Request Forgery protection

def

def

def

def

def

if name ==

check response(response headers, expected code):
if response headers["status"] != expected code:
print "Request failed."
exit(-1)

create user(user_info):
user _name = user_info["userName"]
print "Creating user [%s]..." % (user_name)

uri = "%ss/users" % (GWS BASE URI)

user = {
"userName": user name,
"password": user _info["password"],
"firstName": user info["firstName"],
"lastName": user info["lastName"],
"roles": [user info["role"]]

}

response headers, response content = post(uri, user)
check response(response headers, "200")

user_id = response content["id"]
print "User [%s] created. User id [%s]." % (user_name, user id)

return user id

assign device to user(user id, phone number):

print "Creating device [%s] and assigning to user [%s]..." % (phone number, user id)

uri = "%s/users/%s/devices" % (GWS_BASE_URI, user_id)
device = {
"phoneNumber": phone number
}
response headers, response content = post(uri, device)

check response(response headers, "200")

device id = response content["id"]

print "Device [%s] created and assigned to user id [%s]." % (device id, user id)

create users and devices():
for user _info in CONTACT CENTER USERS:
user _id = create user(user_info)
assign device to user(user id, user info["phoneNumber"])

getToken():
uri = "%s/diagnostics/version" % (GWS_BASE URI)

response headers, response content = get(uri)
check response(response headers, "200")

~_main_ ":

getToken()
create users and devices()

Web Services APl Reference

99

API basics Features

Features

This is part of the API Basics section of the Web Services API.

Overview

The features resource allows the client application to determine which functionality is available in the
current contact center. This data can then be used to draw the Ul as appropriate for the feature set
that is supported for the current contact center.

A feature represents a set of functionality that may include channels, services, resources, sets of
operations, settings groups, and so on. Anything that is needed for the feature to function
successfully should be available when a feature is enabled for the contact center. When a feature is
disabled, the API behaves as if this set of functionality does not exist. This returns results such as 404
errors when relevant resources are accessed, settings groups are not visible in lists, and operations
return with invalid operation errors.

Operations

Two resources are available in the API to support this functionality:

e api/v2/system/features represents all features available in the system.

e api/v2/features represents the set of features for a given contact center.
The following operations are available for /features

Operation Description Permissions

Returns a list of URIs for the
features assigned to this contact

center. e Contact Center Admin
The parameter fields=* causes full e Agent

feature descriptions to be returned
instead of URIs.

GET

The following operations are available for /system/features

Operation Description Permissions

Returns a list of URIs for all of the
features available in the system.

GET The parameter fields=* causes full * Contact Center Admin

feature descriptions to be returned
instead of URIs.

Web Services APl Reference 100

API basics Features

The full feature set is defined by Web Services and is not modifiable.

The following operations are available for /ffeatures/{id}
Operation Description Permissions

Returns the full feature * Contact Center Admin

GET

description. . Agent
Removes the feature from the .
DELETE contact center. ¢ Cloud Admin
Attributes

The following attributes are supported for each feature:

Attribute Type Description Access

The name of the feature
(this is also the unique

id String identifier and should be ~ GET
in a URI-compatible
format).
displayName String ;\Ieaar:nuerethat describes the GET
description String E;iﬁ?ghon of the GET

Supported Features

The following features are currently supported. If a feature is marked Y under Assigned by default,
all contact centers will have this feature assigned.

Currently, default features cannot be unassigned.

Web Services APl Reference 101

API basics

Features

Name
api-provisioning-read
api-provisioning-write
api-voice
api-voice-recording
ui-supervisor-provisioning-routing
ui-supervisor-provisioning-skill

ui-supervisor-reporting
ui-supervisor-provisioning-user

ui-supervisor-details-tab

ui-supervisor-recording
api-multimedia-chat
api-multimedia-email
api-multimedia-workitem
api-multimedia-facebook
api-multimedia-twitter
api-ucs-voice

api-supervisor-recording

api-supervisor-monitoring
api-supervisor-agent-control
ui-supervisor-add-user

ui-supervisor-edit-user

ui-supervisor-case-data

ui-supervisor-toast-data

ui-supervisor-service-level-
settings

ui-supervisor-untimed-wrapup

api-screen-recording
api-vcc-outbound-call-recording

Description
General provisioning read
General provisioning write
API for the voice channel
API for voice recording
Supervisor Ul to provision routing
Ul to provision skills

Supervisor Ul to display 'Reports'
tab (contact center statistics)

Supervisor Ul to display 'Agents’
tab

Supervisor Ul to display 'Details'
tab

Ul to view call recordings

API for chat channel

API for email channel

API for workitem channel

API for facebook channel

API for twitter channel

API for voice integration with ucs
API For Call Recording Supervisor

API For Supervisors to Monitor
Agent Calls

API For Supervisors to Control
Agent State

Supervisor Ul to allow creation/
deletion of users

Supervisor Ul to allow editing of
users

Supervisor Ul - Enable
configuration of Case Data in CC
Settings

Supervisor Ul - Enable
configuration of Toast Data in CC
Settings

Supervisor Ul - Enable
configuration of Queue & Skill
Service Level settings in CC
Settings

Supervisor Ul - Enable
configuration of 'untimed' wrap
up time option in CC Settings

API for Agent Screen Recording
Enables attached data with

< < <z < < <

=<

z2 X zzzzzz2 < Z2

=

=2

Assigned by default

Web Services APl Reference

102

API basics

Features

Name

api-user-account-management-
email

api-devices-webrtc

Description

unique id for VCC call recording
solution

API for account management via
email

API support for WebRTC devices

N

N

Assigned by default

Web Services APl Reference

103

API basics Services

Services

This is part of the API Basics section of the Web Services API.

Overview

The Services resource provides a list of the services available in the system as well as their statuses
and any information that is necessary to interact with the service (for example, a public SIP port for a
"Voice" service). These services represent various aspects of Web Services that (in most cases)
correspond to internal Genesys servers. For instance, each "Voice" service corresponds to a TServer,
each "Reporting" service corresponds to a StatServer, and so on. A Ul application can use this
information to draw portions of the screen based on the status of a specific service. For instance, if
the Provisioning service is "read only" the Ul should disable all write operations but allow reading of
provisioning data.

Operations

The following operations are available for /services:

Operation Description Permissions

Returns a list of service URIs or

actual service resources if the * Agent
fields parameter is specified.
The list is populated based on
the features currently enabled for « contact Center Admin
the contact center.

GET e Supervisor

The following operations are available for /services/{id}:
Operation Description Permissions

* Agent

GET Returns information about the . Supervisor
specified service. P

Contact Center Admin

Attributes

The following attributes are currently available for each service resource:

Web Services APl Reference 104

API basics Services

Attribute Type Description Access Applies To
A unique string
id String identifying the GET All Services
service

The service name.
This will be equal
to the name of the
corresponding
server's
application object
in Configuration
Server. Note that
in case there is a
primary/backup
pair, the primary
server's
application name
will be used
regardless of
which instance is
currently running.
For the
"Provisioning"
service, the value
will always be set
to Provisioning.

One of the
following:

name String GET All Services

. Provisioning (CME + .
type String Cassandra) | Voice (T- GET All Services

Server) | Reporting
(Stat Server) | Media
(Interaction Server)

The service's
current state.
Possible values
state String are: GET All Services

Active | Inactive |
ReadOnly (where
applicable)

Notifications

The client application can subscribe to the topic /notifications/services in order to receive service
state change notifications. The following attributes will be present in a service state change
notification:

Attribute Value Type Description
messageType String Will always be

Web Services APl Reference 105

API basics Services

Attribute Value Type Description
ServiceStateChangeMessage
The service resource for which

service Service Resource the state has been changed
Examples
GET /services?fields=*
{
"statusCode": 0,
"services": [{
id": "L,
"name": "Provisioning",
"type": "Provisioning",
"state": "Active"
}I
{
"id": "Lt
"name": "SIPS1",
"type": "Voice",
"state": "Active"
}I
{
"id": "L,
"name": "SIPS2",
"type": "Voice",
"state": "Active"
}I
}
GET /services/<service id>
{
"statusCode": 0,
"service": [{
"id": <service id>,
"name": "Provisioning",
"type": "Provisioning",
"state": "Active" }
}

Web Services APl Reference 106

Voice API Services

Voice AP]

This section describes the Voice API portion of the Web Services APl and provides guidance for
developers building voice-related client applications. You can use this API to write agent applications
that provide a variety of voice-related features, from agent state management and call control to
supervisor monitoring and call recording.

CometD notifications

In order for asynchronous requests to work correctly in the Web Services API, you must subscribe to
the appropriate topics for the functionality available in your client application. See CometD
notifications for details about the topics you can subscribe to for the Voice API.

Resources

The Voice API includes the following resources:

e Call Resource

e Device Resource

Session management
Related operations

e StartContactCenterSession

¢ EndContactCenterSession

Agent state

You can use the Voice API to set an agent's state on the voice channel; this includes standard
Genesys states as defined in system settings as well as your own custom states you can define using
the Settings API.

Related operations

¢ Ready
* NotReady

Web Services APl Reference 107

Voice API Services

e AuxWork

* AfterCallWork

* Offline

¢ DoNotDisturbOn
e DoNotDisturbOff

Call forwarding

You can use the Voice API to forward calls on a specified device to a new destination or turn off call
forwarding for that device.

Related operations

e ForwardCallsOn

¢ ForwardCallsOff

Basic call control

The Voice API includes all the common call control functionality Genesys offers.
Related operations

 Dial

* Answer

* Reject

* Hold

e Retrieve

e Hangup

¢ SendDtmf

e MuteCall

e UnMuteCall

¢ SetCallDisposition

Web Services APl Reference 108

Voice API Services

Conferences and transfers
Related operations

¢ SingleStepConference
 InitiateConference

* CompleteConference

¢ RemoveParticipantFromConference
» ClearCall

* SingleStepTransfer

* InitiateTransfer

e CompleteTransfer

* SwapcCalls

¢ MergeWithOtherCall

Call data

Related operations

AttachUserData

* UpdateUserData

DeleteUserData

e DeleteUserDataPair

Supervisor
Related operations

e ListenIn

* Coach

* Bargeln

¢ CancelSupervisionMonitoring
e SwitchToBargeln

* SwitchToListenin

e MuteMonitoredUser

e UnmuteMonitoredUser

Web Services APl Reference 109

Voice API Services

Call recording

Related operations

StartCallRecording

PauseCallRecording

* ResumeCallRecording

StopCallRecording

IM Session API

You can use the IM Session API to enable instant messaging between agents in your application.

Related resources
e imSessions resource
Related operations

* InitiatelMSession
¢ SendMessage

* Complete

* AttachUserData
¢ UpdateUserData

¢ DeleteUserData

Web Services APl Reference 110

Voice API CometD notifications

CometD notifications

You can subscribe to the following Voice API-related topics to receive CometD notifications:
* /v2/me/devices — messages related to devices. For example, changes to agent state, do-not-disturb,
call forwarding, and supervisor monitoring. This topic supports the following message types:
¢ DeviceStateChangeMessage

* ErrorMessage
* /v2/me/calls — messages related to calls. For example, changes to call state, updates to call
participant information, and updates to call data. This topic supports the following message types:
* CallStateChangeMessage

* ErrorMessage

DeviceStateChangeMessage

Property Description

The data element is present in all CometD

data notifications and is the root JSON element. You can
use data.messageType to identify the message and
determine what other properties should be present.

This property identifies the message type, in this

data.messageType case DeviceStateChangeMessage.

data.devices An array of device resources.
channel The topic to which the message was published.
Example
"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [
{
"id": "efelab32-53f9-43ce-b65e-5768c61f7d4a",
"deviceState": "Active",

"userState": {
"id": "900D55CC-2BB0O-431F-8BF9-D3525B383BE6",
"displayName": "Not Ready",
"state": "NotReady"

}I

"phoneNumber": "5005",

"el64Number": "5005",

"telephonyNetwork": "Private",

"doNotDisturb": "Off",

"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/

370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [

Web Services APl Reference 111

Voice API CometD notifications

"DoNotDisturbOn",
"ForwardCallsOn",
"ListenIn",
"Coach",
"BargeIn"
]
b
|
}I
"channel": "/v2/me/devices"

}

CallStateChangeMessage

Property Description
The data element is present in all CometD
data notifications and is the root JSON element. You can

use data.messageType to identify the message and
determine what other properties should be present.

This property identifies the message type, in this
data.messageType case CallStateChangeMessage.

This property further identifies the type of
notification and can have one of the following
values:

e StatusChange — The status of the call has
changed.

e ParticipantsUpdated — The call participants
have changed.

data.notificationType e AttachedDataChanged — The call data has
changed.

¢ DtmfSent — This is sent as confirmation that the
SendDtmf operation was successful.

* CallRecordingStateChange — The state of call
recording has changed.

¢ MonitoredUserMutedStateChange — The
monitored user's muted state has changed.

data. extensions This prqperty contains additional key/value
properties from the Genesys platform.
A call resource with the updated state and
el capabilities.
channel The topic to which the message was published.
Example
"data": {

"notificationType": "StatusChange",

Web Services APl Reference 112

Voice API CometD notifications

"call": {

"id": "013VO8JRL498H10I04000VTAES000015",

"state": "Established",

"callUuid": "013VO8JRL498H10I04000VTAESQ00015",

"connId": "0072026cb98d140f",

"deviceUri": "http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-
b65e-5768c61f7d4a",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"5000",
"phoneNumber":"5000",
"digits":"5000"
}
]I

"dnis": "5000",
"callType": "Internal",
"capabilities": [
"UpdateUserData",
"SingleStepConference",
"DeleteUserData",
"Hangup",
"SendDtmf",
"Hold",
"AttachUserData",
"SingleStepTransfer",
"InitiateConference",
"DeleteUserDataPair",
"InitiateTransfer"
]'
"duration": "1",
"mute": "Off",
"supervisorListeningIn": false,
"monitoredUserMuted": false,
"uri": "http://127.0.0.1:8080/api/v2/me/calls/013VO8IRL498H10I04000VTAESO00015",
"path": "/calls/013VO8JRL498H10I04000VTAESO00015",
}I
"phoneNumber": "5005",
"extensions": {
"WrapUpTime": 0,
"BusinessCall": 0O

}I
"messageType": "CallStateChangeMessage"
}I
"channel": "/v2/me/calls"
}
ErrorMessage
Property Description
The data element is present in all CometD
data notifications and is the root JSON element. You can

use data.messageType to identify the message and
determine what other properties should be present.

This property identifies the message type, in this

data.messageType case ErrorMessage.

data.deviceUri The URI of the device to which the error message is

Web Services APl Reference 113

CometD notifications

Voice API
Property Description

related.
The URI of the call to which the error message is

data.callUri related. May not be present if the error is not
related to a call.

. The description of the error. If no error description

’ 9 is provided by T-Server, this may not be present.
channel The topic to which the message was published.

Errors Web Services receives from T-Server always relate to a device, but may not
relate to a call, depending on the specific scenario.

Examples
{
"data": {
"messageType": "ErrorMessage",
"deviceUri": "http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-b65e-5768c61f7d4a",
"errorMessage": "Invalid Called Dn"
+
"channel": "/v2/me/devices"
b
{
"data": {
"messageType": "ErrorMessage",

"deviceUri": "http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-b65e-5768c61f7d4a",
"callUri": "http://127.0.0.1:8080/api/v2/calls/0071023821aec021",
"errorMessage": "Incorrect object state"

}I

"channel": "/v2/me/calls"

Web Services APl Reference

114

Voice API Call resource

Call resource

This resource is part of the Voice API section of the Web Services API.

Overview

The call resource includes properties that describe the current state of the call and the available
operations given the current state. Calls are returned from GET requests to /api/v2/me/calls or GET
requests to /api/v2/me?subresources=*. See Recovering existing state for examples. The device
resource is also present in CallStateChangeMessages delivered to the client via CometD. The format
of the call resource is identical in these two contexts, which lets clients more conveniently update
their state.

Sample data

{
"id":"@1RCC3N118B1VOSL807GK2LAES000010",
"state":"Established",
"callUuid":"01RCC3N118B1VOSL807GK2LAES000010",
"connId":"0071027198180020",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-ba05-2ae39555b0d1",
"participants":|
{
"el64Number":"+19165550104",
"location":"California",
"formattedPhoneNumber":"(916) 555-0104",
"country":{
"name":"United States",
Ilcodell : IIUSII)
"callingCode":"1"
}I
"phoneNumber":"9165550104",
"digits":"9165550104"
}
]l

"dnis":"9165550104",

"callType":"Internal",

"capabilities": [
"UpdateUserData",
"SendDtmf",
"InitiateConference",
"Hold",
"SingleStepTransfer",
"InitiateTransfer",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
"Hangup",
"StartCallRecording"

Web Services APl Reference 115

Voice API

Call resource

"userData":{
"AccountNumber":"12345678"

}I

"duration":"7",

"mute":"0ff",

"recordingState":"Stopped",

"supervisorListeningIn":false,

"monitoredUserMuted":false,

"monitoring":false,

"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00010",
"path":"/calls/01RCC3N118B1VOSL807GK2LAES000010",

"supervisorMonitoringState": {
"state": "ListenIn"
}

}

Resource details

Field
id
state

callUuid

connld

deviceUri

participants

dnis

callType

capabilities

userData

Description
The unique identifier for the call.

The current call state (Dialing, Held, Established,
and so on).

The universally unique identifier associated with
the call.

The connection ID for the call. This value comes
from the Tlib event.

Link to the device for which this state is applicable.

A collection of participants and their information. If
the participant number contains +country code,
then the participant contains the following list of
structures:

e country — country information of the phone
number in the JSON format:
"country":{"name":"United States",
"code":"US","callingCode":"1"}

* location — region of the phone number.

¢ localPhoneNumber — phone number in
domestic format.

e E164digits — phone number in e.164 format.

The DNIS attribute of the call, as sent by T-Server.

The type of call, such as Internal, Inbound,
Outbound, Consult.

A list of capabilities for the current state. For
example, if the current state is Dialing, the list
might be ["HangUp", "Hold"].

A map of custom values attached to the call.

Web Services APl Reference

116

Voice API

Call resource

Field

duration

mute

recordingState
supervisorListeningin

monitoredUserMuted

monitoring
uri
path

ani

extensions

supervisorMonitoringState

Description
The duration of the call, in seconds.
Shows whether the call is muted.

Shows the recording state of the call. Possible
values are Recording, Paused, Stopped.

Specifies whether a supervisor is listening to the
call.

This attribute indicates the mute state of the user
being monitored by the supervisor.

Specifies whether the user is monitoring the call.
The call's resource identifier.
The path to the call resource.

The ANI attribute of the call. This attribute is
optional and only included if sent by T-Server.

The latest Extensions attribute. This attribute is
optional and only included if sent by T-Server.

Specifies the supervisor's monitoring state. This
JSON object includes the following attribute:

e state — Possible values are Coach, Listenln, and
Bargeln.

Web Services APl Reference

117

Voice API Device resource

Device resource

This resource is part of the Voice API section of the Web Services API.

Overview

Device resources include properties that show the current state of the user's device and the available
operations for the current state. Devices are returned from GET requests to /api/v2/me/devices or
GET requests to /api/v2/me?subresources=*. See Recovering existing state for examples. The
device resource is also present in DeviceStateChangeMessages delivered to the client via CometD.
The format of the device resource is identical in these two contexts, which lets clients more
conveniently update their state.

Sample data

{

"id":"efelab32-53f9-43ce-b65e-5768c61f7d4a",

"deviceState":"Active",

"userState":{
"id":"9430250E-0A1B-421F-B372-F29E69366DED",
"displayName": "Ready",

"state":"Ready"

I

"phoneNumber":"5005",

"el64Number":"5005",

"telephonyNetwork":"Private",

"doNotDisturb":"0ff",

"voiceEnvironmentUri":"http://127.0.0.1:8080/api/v2/voice-environments/

370ef5e6-9e3c-4d91-9588-7f4dfe67e011",

"capabilities": [
"ForwardCallsOn",
"DoNotDisturbOn",
"ListenIn",

"Coach",
"BargeIn",
"CancelSupervisorMonitoring"

] ’

"supervisorMonitoringState":{
"state":"ListenIn",
"mode":"AllCalls",
"scope":"Call",
"targetDevicelUri":"http://127.0.0.1:8080/api/v2/devices/

9cl4cad7-17c4-48d0-8492-7cfOff92c224"

}

}

Web Services APl Reference 118

Voice API

Device resource

Resource details

Field
id

deviceState

userState

phoneNumber
el64Number

telephonyNetwork

doNotDisturb

voiceEnvironmentUri

capabilities

supervisorMonitoringState

Description
The unique identifier for the call.
The state of the device (Active, Inactive).

The state of the user for this device. The userState
contains the following list of structures:

e id — The ID of the user state.

e displayNam" — The display name for the user
state.

e state — The user state.

The phone number assigned to this device.
The phone number in e.164 format.

The type of telephony network the device is
associated with. The possible values are:

¢ Public — A device that is connected over the
PSTN via SIP Server.

e Private — Other deployment scenarios such as
local endpoints or IP phones connected to SIP
Server or PBX hardphones connected to Avaya.

The Do Not Disturb state for this device (On, Off).

The URI for the voice environment to which this
device belongs.

A list of capabilities currently available on the
device. For users with ROLE_AGENT, the possible
values are: DoNotDisturbOn, DoNotDisturbOff,
ForwardCallsOn, and ForwardCallsOff. Additionally,
users with ROLE_SUPERVISOR may see the
following: Listenin, Bargeln, Coach,
CancelSupervisorMonitoring, MuteMonitoredUser,
and UnmuteMonitoredUser.

The current state of the supervisor monitoring the
device. This property is only present when
supervisor monitoring is active on the device. The
supervisorMonitoringState contains the following
list of structures:

¢ state — The supervisor monitoring state on this
device. Possible values are Listenln, Coach, or
Bargeln.

¢ mode — The supervisor monitoring mode on
this device. Possible values are NextCall or
AllCalls.

Web Services APl Reference

119

Voice API Device resource

Field Description

e scope — The scope of supervisor monitoring.
Possible values are Call or Agent.

» targetDeviceUri — The URI of the device being
monitored.

¢ phoneNumber — The monitored phone number.

e switchName — The name of the switch owning
the phone number.

Web Services APl Reference 120

Voice API StartContactCenterSession

StartContactCenterSession

This operation is part of the Voice API section of the Web Services API.

Overview

Initializes a session for the user with the provided parameters. Almost all client applications that
provide a full set of voice features should send this operation at login and call
EndContactCenterSession when the application exits.

Request URL /api/v2/me/
HTTP method POST

Required features api-voice

Parameters

Parameter Value
operationName StartContactCenterSession

An array of channels the agent uses in the session.
Valid channel names are voice and any valid
multimedia channel (for example, email, chat,
workitem, IM session).

If an error occurs on a given channel, Web Services returns a
response with the error statusCode and information about what
went wrong. For example, if you StartContactCenterSession with
voice and chat and your Interaction Server is out of service, Web
Services returns a partial success statusCode of 7. The
successful part of the operation (voice) returns statusCode: 0
while the failed part of the operation (chat) returns a statusCode
and statusMessage that provide information about why it failed.

channels

If all channel operations fail, Web Services only returns a
statusCode and statusMessage for one of the channels.

This optional parameter specifies the place that
should be used for the session.

If not specified, then Web Services uses the default place for the
agent.

pleee If specified and the place contains one device, then Web
Services logs in the user on that device for the duration of the
session. If the place contains more than one device, then Web
Services logs in the user on the ACDPosition. In this scenario, if
the place doesn't contain an ACDPosition or if it has multiple

Web Services APl Reference 121

Voice API

StartContactCenterSession

Parameter

loginCode

agentLoginPassword

queue

devicePath

workmode

dynamicPhoneNumber

Value

ACDPositions, then the StartContactCenterSession operation
fails. Note: If there are multiple ACDPositions, you should
specify the devicePath.

When the client ends the session, Web Services restores the
default device assignment.

This optional parameter specifies the switch login
code that should be used for login. If it's not
specified, Web Services looks for an appropriate
switch login that is assigned to the user for the T-
Server.

This optional parameter is passed to
RequestAgentLogin if LoginCode is specified in the
request. This allows the agent to log in to the
switch from their desktop rather than having to log
in using their physical phone. Note: If the
loginCode is not specified in the request, Web
Services gets the password from Configuration
Server (if it exists) during the appropriate login
code calculation and uses it in

RequestAgentLogin.

This optional parameter specifies a queue to be
included in the login request.

A path to a device assigned to an agent. This
attribute is mandatory when an agent is assigned
multiple devices in the same location where the
device to be used for login can't be resolved — for
example, the place has multiple extensions or
multiple ACDPositions. The devicePath specifies
which device the agent uses to login. Note: This
overrides the logic of the place login.

This optional parameter specifies which workmode
is applied to the AgentLogin request. Valid values
are ManualIn and AutoIn.

This optional parameter is passed to the
RequestAgentLogin operation in extensions. This
parameter specifies the alternate phone number to
which all SIP communication will be directed for the
duration of the agent session. All agent-related and
call-related events are generated for the DN for the
default agent's place.

Note: SIP Server will reject the RequestAgentLogin operation if
the alternate phone number provided by the agent already
exists in the Configuration Server.

Web Services APl Reference

122

Voice API

StartContactCenterSession

Sample 1

Request

POST api/v2/me
{

"operationName": "StartContactCenterSession",

"channels": [
"voice"
1
}

HTTP Response

{
"statusCode": 0

}

CometD notification

This operation may not result in a notification. If the agent is logged in to a device as a result of
starting the session, Web Services delivers a DeviceStateChangeMessage via CometD. If the agent is
already logged in, Web Services skips the login request and doesn't return a notification.

Sample 2

Request

POST api/v2/me
{

"place": "SIP 5000",
"loginCode": "8000",
"queue": "9000",
"channels": [
"voice"
1
h

"operationName": "StartContactCenterSession",

HTTP response

"statusCode": 0
}

Web Services APl Reference

123

Voice API StartContactCenterSession

Sample 3
Request
POST /api/v2/me
{
"operationName": "StartContactCenterSession",
"channels": ["voice"],
"place": "agentl",
"loginCode": "agentl",
"agentLoginPassword": "password"
}

HTTP response

"statusCode": 0
}

Sample 4

The following example shows the partial success behavior:

Request

POST /api/v2/me
{

"channels": [

"voice",

"chat"
] ’
"operationName":"StartContactCenterSession"

}

HTTP response

{
"failed": [
{
"channel":"multimedia",
"statusCode":3,
"statusMessage":"Unsupported feature"
}

] ’

"statusCode":7,

"succeeded": [
"channel":"voice",
"statusCode": 0

}

]

}

Web Services APl Reference 124

Voice API StartContactCenterSession

Sample 5

The following example shows workmode:

Request

POST /api/v2/me
{

"operationName":"StartContactCenterSession",
"workmode": "ManualIn",
"channels":["voice"],
"place":"agentl@pizza.com"

HTTP response

"statusCode": 0
)

The following example shows workmode with an invalid value:

Request

POST /api/v2/me

{
"operationName":"StartContactCenterSession",
"workmode": "aManualIn",
"channels":["voice"],
"place":"agentl@pizza.com"

HTTP response

{

"statusCode": 2,

"statusMessage": "Parameter 'workmode' is invalid: \"The specified value is not within
valid range\""

}

Sample 6

The following example shows an alternate phone number:

Request

POST /api/v2/me
{

"operationName":"StartContactCenterSession",

Web Services APl Reference 125

Voice API StartContactCenterSession

"channels":["voice"],
"dynamicPhoneNumber": "Ssdynamic phone numbers"

}

HTTP response

"statusCode":0,
"devices": [

"id":"b24aca59-5fda-4eac-88d2-dde979e5dc97",

"deviceState":"Active",

"userState":{"id":"2B36138D-
C564-4562-A8CB-3C32D564F296", "displayName" : "AuxWork", "state":"NotReady", "workMode": "AuxWork"},

"phoneNumber":"%original phone number%",

"description":"",

"el64Number":"",

"telephonyNetwork":"Private",

"doNotDisturb":"0ff",

"voiceEnvironmentUri":"http://127.0.0.1/api/v2/voice-environments/
136ca479-fd97-42eb-9865-1792612955bc",

"capabilities":["ForwardCallsOn"],

"channels":["voice"],

"dynamicPhoneNumber": "Sdynamic phone numbers"

}
]

Web Services APl Reference 126

Voice API

EndContactCenterSession

EndContactCenterSession

This operation is part of the Voice API section of the Web Services API.

Overview

Ends a previously started session for the agent. For voice, this logs out the agent and restores the

agent's default device assignment.

This request also invalidates the client HTTP session and should be performed as the

last step for session cleanup.

Request URL
HTTP method
Required features

Parameters

Parameter

operationName

Sample

Request

POST api/v2/me
{

"operationName": "EndContactCenterSession"

}

HTTP response

"statusCode": 0
}

/api/v2/me/
POST

api-voice

Value
EndContactCenterSession

Web Services APl Reference

127

Voice API

Ready

Ready

This operation is part of the Voice API section of the Web Services API.

Overview

Sets the current user to the Ready state. Ready is a system-defined agent state operation and is

always available for use.

Request URL
HTTP method

Required features

Parameters

Parameter
operationName

workmode

Sample

Request

POST /api/v2/me/channels/voice
{

"operationName": "Ready"

}

HTTP response

{
"statusCode": 0

}

CometD notification

{

/api/v2/me/channels/voice
POST

api-voice

Value
Ready

This optional parameter specifies which workmode
is applied to the Ready operation. Valid values are
ManualIn and AutoIn.

Web Services APl Reference

128

Voice API Ready

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [
{

"id": "74152ed8-858f-4a33-9e96-36213a678d30",
"deviceState": "Active",
"userState": {
"id": "9430250E-0A1B-421F-B372-F29E69366DED",
"displayName": "Ready",
"state": "Ready"
}I
"phoneNumber": "5000",
"e164Number": "5000",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/
370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [
"ForwardCallsOn"
]

b
|
}I
"channel": "/v2/me/devices"

}

Web Services APl Reference 129

Voice API

Not Ready

Not Ready

This operation is part of the Voice API section of the Web Services API.

Overview

Sets the current user to the NotReady state. NotReady is a system-defined agent state operation and

is always available for use.

Request URL
HTTP method

Required features

Parameters

Parameter
operationName

Sample

Request

POST api/v2/me/channels/voice

"operationName": "NotReady"

}

HTTP response

{
}

"statusCode": 0

CometD notification

"data": {

"messageType": "DeviceStateChangeMessage",

"devices": [

{

/api/v2/me/channels/voice
POST

api-voice

Value
NotReady

Web Services APl Reference

130

Voice API Not Ready

"id": "74152ed8-858f-4a33-9e96-36213a678d30",
"deviceState": "Active",
"userState": {
"id": "900D55CC-2BB0-431F-8BF9-D3525B383BE6",
"displayName": "Not Ready",
"state": "NotReady"
}I
"phoneNumber": "5000",
"e164Number": "5000",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/
370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [
"ForwardCallsOn"
1

b
1
}I
"channel": "/v2/me/devices"

}

Web Services APl Reference 131

Voice API

Aux Work

Aux Work

This operation is part of the Voice API section of the Web Services API.

Overview

Sets the current user to the NotReady state with a workmode of AuxWork. AuxWork is a system-
defined agent state operation and is always available for use.

Request URL
HTTP method

Required features

Parameters

Parameter
operationName

Sample

Request

POST api/v2/me/channels/voice
{

"operationName": "AuxWork"

}

HTTP response

{
}

"statusCode": 0

CometD notification

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [

{

/api/v2/me/channels/voice
POST

api-voice

Value
AuxWork

Web Services APl Reference

132

Voice API Aux Work

"id": "74152ed8-858f-4a33-9e96-36213a678d30",
"deviceState": "Active",
"userState": {
"id": "2B36138D-(C564-4562-A8CB-3C32D564F296",
"displayName": "AuxWork",
"state": "NotReady",
"workMode": "AuxWork"
}I
"phoneNumber": "5000",
"e164Number": "5000",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/
370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [
"ForwardCallsOn"
]

}
]
}I

"channel": "/v2/me/devices"

Web Services APl Reference 133

Voice API After Call Work

After Call Work

This operation is part of the Voice API section of the Web Services API.

Overview

Sets the current user to the NotReady state with a workmode of AfterCallWork. AfterCallWork is a
system-defined agent state operation and is always available for use.

Request URL /api/v2/me/channels/voice
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName AfterCallWork
. This parameter is passed to T-Server in extensions
wrapUpTime to change/cancel agent wrap-up time.
Sample
Request

POST api/v2/me/channels/voice
{

"operationName": "AfterCallWork" ,
"wrapUpTime": "0"

HTTP response

"statusCode": 0
}

Web Services APl Reference 134

Voice API

After Call Work

CometD notification

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [
{

"id": "74152ed8-858f-4a33-9e96-36213a678d30",
"deviceState": "Active",
"userState": {
"id": "D3663509-3D82-4DD3-A82E-2EASEFAQ2AEF",
"displayName": "AfterCallWork",
"state": "NotReady",
"workMode": "AfterCallWork"
}I
"phoneNumber": "5000",
"el64Number": "5000",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/
370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [

"ForwardCallsOn",
"DoNotDisturbOn"
1
b
1
}I
"channel": "/v2/me/devices"

by

Web Services APl Reference

135

Voice API

Offline

Offline

This operation is part of the Voice API section of the Web Services API.

Overview

Sets the current user to Offline (logged out). Offline is a system-defined agent state operation and is

always available for use.

Request URL
HTTP method

Required features

Parameters

Parameter
operationName

Sample

Request

POST api/v2/me/channels/voice
{

"operationName": "Offline"

}

HTTP response

{
}

"statusCode": 0

CometD notification

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [
{

/api/v2/me/channels/voice
POST

api-voice

Value
Offline

Web Services APl Reference

136

Voice API Offline

"id": "74152ed8-858f-4a33-9e96-36213a678d30",
"deviceState": "Active",
"userState": {
"id": "OF7F5003-EF26-4D13-A6Ef-DOC7EC819BEB",
"displayName": "Offline",
"state": "LoggedOut"
}I
"phoneNumber": "5000",
"e164Number": "5000",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/
370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [

"ForwardCallsOn",
"DoNotDisturbOn"
]
b
1
}I
"channel": "/v2/me/devices"

}

Web Services APl Reference 137

Voice API DoNotDisturbOn

DoNotDisturbOn

This operation is part of the Voice API section of the Web Services API.

Overview

Turns do-not-disturb on for the device.

Request URL /api/v2/me/devices/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName DoNotDisturbOn
Sample
Request
POST api/v2/me/devices/efelab32-53f9-43ce-b65e-5768c61f7d4a
{
"operationName": "DoNotDisturbOn"

}

HTTP response

"statusCode": 0
}

CometD notification

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [

"id": "efelab32-53f9-43ce-b65e-5768c61f7d4a",

Web Services APl Reference 138

Voice API DoNotDisturbOn

"deviceState": "Active",

"userState": {
"id": "9430250E-0QA1B-421F-B372-F29E69366DED",
"displayName": "Ready",
"state": "Ready"

}I

"phoneNumber": "5005",

"e164Number": "5005",

"telephonyNetwork": "Private",

"doNotDisturb": "On",

"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/

370ef5e6-9e3c-4d91-9588-7f4dfe67e011",

"capabilities": [
"DoNotDisturbOff",
"ForwardCallsOn",
"ListenIn",
"Coach",
"BargeIn”

]

}
]
}I

"channel": "/v2/me/devices"

Web Services APl Reference 139

Voice API DoNotDisturbOff

DoNotDiIsturbOff

This operation is part of the Voice API section of the Web Services API.

Overview

Turns do-not-disturb off for the device.

Request URL /api/v2/me/devices/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName DoNotDisturbOff
Sample
Request
POST api/v2/me/devices/efelab32-53f9-43ce-b65e-5768c61f7d4a
{
"operationName": "DoNotDisturbOff"

}

HTTP response

"statusCode": 0
}

CometD notification

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [

"id": "efelab32-53f9-43ce-b65e-5768c61f7d4a",

Web Services APl Reference 140

Voice API DoNotDisturbOff

"deviceState": "Active",

"userState": {
"id": "9430250E-0QA1B-421F-B372-F29E69366DED",
"displayName": "Ready",
"state": "Ready"

}I

"phoneNumber": "5005",

"el64Number": "5005",

"telephonyNetwork": "Private",

"doNotDisturb": "Off",

"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/

370ef5e6-9e3c-4d91-9588-7f4dfe67e011",

"capabilities": [
"ForwardCallsOn",
"DoNotDisturbOn",
"ListenIn",
"Coach",
"BargeIn”

]

}
]
}I

"channel": "/v2/me/devices"

Web Services APl Reference 141

Voice API ForwardCallsOn

ForwardCallsOn

This operation is part of the Voice API section of the Web Services API.

Overview

Sets call forwarding on the device to the specified destination.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName ForwardCallsOn
destination 'cl'glc.la.snumber where Web Services should forward
Sample
Request

POST api/v2/me/devices/efelab32-53f9-43ce-b65e-5768c61f7d4a

"operationName": "ForwardCallsOn",
"destination": "5001"
}

HTTP response

"statusCode": 0
}

CometD notification

{
"data": {

Web Services APl Reference

142

Voice API ForwardCallsOn

"messageType": "DeviceStateChangeMessage",
"devices": [
{

"id": "efelab32-53f9-43ce-b65e-5768c61f7d4a",
"deviceState": "Active",
"userState": {
"id": "9430250E-0A1B-421F-B372-F29E69366DED",
"displayName": "Ready",
"state": "Ready"
}I
"phoneNumber": "5005",
"e164Number": "5005",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"forwardTo": "5001",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/
370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [
"ForwardCallsOff",
"DoNotDisturbOn",
"ListenIn",
"Coach",
"BargeIn”
]
}
]
}I

"channel": "/v2/me/devices"

Web Services APl Reference 143

Voice API ForwardCallsOff

ForwardCallsOff

This operation is part of the Voice API section of the Web Services API.

Overview

Cancels call forwarding for a device.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName ForwardCallsOff
Sample
Request
POST api/v2/me/devices/efelab32-53f9-43ce-b65e-5768c61f7d4a
{
"operationName": "ForwardCallsOn",
"destination": "5001"
}

HTTP response

"statusCode": 0
}

CometD notification

"data": {
"messageType": "DeviceStateChangeMessage",
"devices": [
{

Web Services APl Reference 144

Voice API ForwardCallsOff

"id": "efelab32-53f9-43ce-b65e-5768c61f7d4a",
"deviceState": "Active",
"userState": {
"id": "9430250E-0QA1B-421F-B372-F29E69366DED",
"displayName": "Ready",
"state": "Ready"
}I
"phoneNumber": "5005",
"e164Number": "5005",
"telephonyNetwork": "Private",
"doNotDisturb": "Off",
"forwardTo": "5001",
"voiceEnvironmentUri": "http://127.0.0.1:8080/api/v2/voice-environments/
370ef5e6-9e3c-4d91-9588-7f4dfe67e011",
"capabilities": [
"ForwardCallsOff",
"DoNotDisturbOn",
"ListenIn",
"Coach",
"BargeIn”
]
}
]
}I

"channel": "/v2/me/devices"

Web Services APl Reference 145

Voice API Dial

Dial

This operation is part of the Voice API section of the Web Services API.

Overview

Initiates a new outbound call to the specified destination.

Request URL /api/v2/me/devices/{id}/calls
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName Dial
destination ﬁii\?ng object that includes the number to be

An optional parameter that is used by Web
location Services to set the location attribute for the
corresponding T-Server requests.

An optional JSON object that includes key/value

userData data to be included with the call.

An optional parameter that is used by Web
outboundCallerld Services to set the outbound caller Id attribute
for the corresponding T-Server requests.

Sample 1

Request

POST api/v2/me/devices/631608b3-cebl-472b-ba05-2ae39555b0d1/calls

{
"operationName": "Dial",
"destination": {
"phoneNumber": "15002"
}
}

Web Services APl Reference 146

Voice API Dial

HTTP response

"statusCode": 0
}

CometD notification

"data":{

"notificationType":"StatusChange",

"call":{
"id":"012PUFMMSOASNAK4807GK2LAES000004",
"state":"Dialing",
"callUuid":"012PUFMMSOASNAK4807GK2LAES000004",
"connId":"007102719260b004",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"
}
]I

"dnis":"15002",
"callType":"Internal",
"capabilities": [
"SendDtmf",
"DeleteUserData",
"AttachUserData",
"DeleteUserDataPair",
"Hangup",
"UpdateUserData"
]'
"duration":"0",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO00004",
"path":"/calls/012PUFMMSOASNAK4807GK2LAESO00004"
}I
"phoneNumber":"15000",
"extensions": {
"BusinessCall":0

}I
"messageType": "CallStateChangeMessage"
T
"channel":"/v2/me/calls"
}
Sample 2

This sample includes a key/value pair with the Dial request:

Web Services APl Reference 147

Voice API Dial

Request

POST api/v2/me/devices/631608b3-cebl-472b-bab5-2ae39555b0d1/calls
{
"operationName": "Dial",
"destination": {
"phoneNumber": "15002"
}!
"userData": {
"CustomerSegment": "Gold"
}

}

HTTP response

"statusCode": 0
)

CometD notification

"data":{

"notificationType":"StatusChange",

"call":{
"id":"012PUFMMSOASNAK4807GK2LAESO00004",
"state":"Dialing",
"callUuid":"012PUFMMSOASNAK4807GK2LAES000004",
"connId":"007102719260b004",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": |

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"
}
]I

"dnis":"15002",

"callType":"Internal",

"capabilities": [
"SendDtmf",
"DeleteUserData",
"AttachUserData",
"DeleteUserDataPair",
"Hangup",
"UpdateUserData"

]I

"userData":{
"CustomerSegment":"Gold"

}I

"duration":"0",

"mute":"0ff",

"supervisorListeningIn":false,

"monitoredUserMuted":false,

"monitoring":false,

"uri":"http://127.0.0.1:8080/api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO00004",

"path":"/calls/012PUFMMSOASNAK4807GK2LAESO00004"

Web Services APl Reference 148

Voice API Dial

}I

"phoneNumber":"15000",

"extensions": {
"BusinessCall":0

}I

"messageType":"CallStateChangeMessage"
T,

"channel":"/v2/me/calls"

Web Services APl Reference 149

Voice API

Answer

Answer

This operation is part of the Voice API section of the Web Services API.

Overview

Answers a ringing call.

When you create a device and set the telephonyNetwork attribute to Public, Web
Services doesn't include the Answer operation in the capabilities for incoming calls on
that device. In this scenario, Web Services assumes that an Answer request via CTl is
not supported.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName Answer

Sample
Request

POST api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000C

"operationName": "Answer"

}

HTTP response

{
"statusCode": 0

Web Services APl Reference

150

Voice API Answer

CometD notification

"data": {
"notificationType": "StatusChange",
"call": {
"id": "012PUFMMSOASNAK4807GK2LAES00000C",
"state": "Established",
"callUuid": "O12PUFMMSOASNAK4807GK2LAES00000C",
"connId": "007102719260b00c",
"deviceUri": "http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-bad5-2ae39555b0d1",
"participants": [

"el64Number": "",
"formattedPhoneNumber": "15001",
"phoneNumber": "15001",
"digits": "15001"
}
]l
"dnis": "15000",
"callType": "Internal",
"capabilities": [
"SingleStepTransfer",
"InitiateConference",
"Hold",
"SingleStepConference",
"InitiateTransfer",
"SendDtmf",
"DeleteUserData",
"AttachUserData",
"DeleteUserDataPair",
"Hangup",
"UpdateUserData"
I,
"duration": "22",
"mute": "Off",
"supervisorListeningIn": false,
"monitoredUserMuted": false,
"monitoring": false,
"uri": "http://127.0.0.1:8080/api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000C",
"path": "/calls/012PUFMMSOASNAK4807GK2LAESOO00OC"
}I
"phoneNumber": "15000",
"extensions": {
"WrapUpTime": 0,
"BusinessCall": 0
}I
"messageType": "CallStateChangeMessage"

"éhannel": "/v2/me/calls"

}

Web Services APl Reference 151

Voice API Reject

Reject

This operation is part of the Voice API section of the Web Services API.

Overview

Rejects a ringing call. When this occurs, Web Services redirects the call to the queue from which it
was delivered. This operation is only available when a call is delivered via a queue; you can't reject
direct calls.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName Reject
Sample
Request
POST api/v2/me/calls/013VO8IRL498H10I04000VTAESO0000I
{
"operationName": "Reject"

}

HTTP response

"statusCode": 0
}

CometD notification

"data":{
"notificationType":"StatusChange",

Web Services APl Reference 152

Voice API Reject

"call":{

"id":"013VO8JIRL498H10I04000VTAESOOOOOI",

"state":"Released",

"callUuid":"013V08JRL498H10I04000VTAESO0000I",

"connId":"0071023821aec012",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/
9cl4cad7-17c4-48d0-8492-7cfoff92c224",

"participants": |

"el64Number":"",
"formattedPhoneNumber":"5005",
"phoneNumber":"5005",
"digits":"5005"
}
]’

"dnis":"9000",
"callType":"Internal",
"capabilities": [

]I
"duration":"5",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/013VO8IRL498H10I04000VTAESOOO00I",
"path":"/calls/013V08JRL498H10I04000VTAESO000OI"
}l
"phoneNumber":"5001",
"extensions": {
"WrapUpTime":0,
"BusinessCall":0
}l
"messageType":"CallStateChangeMessage"
I

"channel":"/v2/me/calls"

Web Services APl Reference 153

Voice API

Hold

Hold

This operation is part of the Voice API section of the Web Services API.

Overview

Places a call on hold.

Request URL
HTTP method
Required features

Parameters

Parameter

operationName

/api/v2/me/calls/{id}
POST

api-voice

Value
Hold

Sample
Request
POST api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000I
{
"operationName": "Hold"
}

HTTP response

"statusCode": 0
}

CometD notification

"data":{
"notificationType":"StatusChange",
"call":{
"id":"012PUFMMSOASNAK4807GK2LAESO0000I",
"state":"Held",

Web Services APl Reference

154

Voice API Hold

"callUuid":"012PUFMMSOASNAK4807GK2LAESO0000I",

"connId":"007102719260b012",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-
ba05-2ae39555b0d1",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]’

"dnis":"15000",
"callType":"Internal",
"capabilities": [
"SingleStepTransfer",
"InitiateConference",
"Retrieve",
"SingleStepConference",
"InitiateTransfer",
"DeleteUserData",
"AttachUserData",
"DeleteUserDataPair",
"Hangup",
"UpdateUserData"
]I
"duration":"30",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESOO000I",
"path":"/calls/012PUFMMSOASNAK4807GK2LAESO0000T"
}!
"phoneNumber":"15000",
"extensions":{
"BusinessCall":0
}I

"messageType":"CallStateChangeMessage"
I

"channel":"/v2/me/calls"

Web Services APl Reference 155

Voice API

Retrieve

Retrieve

This operation is part of the Voice API section of the Web Services API.

Overview

Retrieves a call from hold.

Request URL
HTTP method
Required features

Parameters

Parameter

operationName

Sample

HTTP response

/api/v2/me/calls/{id}
POST

api-voice

Value
Retrieve

POST api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000I

{

"operationName": "Retrieve"

}

CometD notification

"statusCode": 0
}

Notification

"data": {

"notificationType": "StatusChange",

"call": {

"id": "012PUFMMSOASNAK4807GK2LAES00000I",

"state": "Established",

Web Services APl Reference

156

Voice API Retrieve

"callUuid": "O12PUFMMSOASNAK4807GK2LAESO0000I",
"connId": "007102719260b012",

"deviceUri": "http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-bad5-2ae39555b0d1",
"participants": [

"el64Number": "",
"formattedPhoneNumber": "15001",
"phoneNumber": "15001",
"digits": "15001"
}
]I
"dnis": "15000",
"callType": "Internal",
"capabilities": [
"SingleStepTransfer",
"InitiateConference",
"Hold",
"SingleStepConference",
"InitiateTransfer",
"SendDtmf",
"DeleteUserData",
"AttachUserData",
"DeleteUserDataPair",
"Hangup",
"UpdateUserData"
]l
"duration": "383",
"mute": "Off",
"supervisorListeningIn": false,
"monitoredUserMuted": false,
"monitoring": false,
"uri": "http://127.0.0.1:8080/api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESOOO0OI",
"path": "/calls/012PUFMMSOASNAK4807GK2LAESOQOOOI"
}I
"phoneNumber": "15000",
"extensions": {
"BusinessCall": 0O
}I
"messageType": "CallStateChangeMessage"
}I
"channel": "/v2/me/calls"

}

Web Services APl Reference 157

Voice API

Hangup

Hangup

This operation is part of the Voice API section of the Web Services API.

Overview

Hangs up a call.

Request URL
HTTP method
Required features

Parameters

Parameter

operationName

/api/v2/me/calls/{id}
POST

api-voice

Hangup

Sample
Request
POST api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000I
{
"operationName": "Hangup"
}

HTTP response

"statusCode": 0
}

CometD notification

"data":{
"notificationType":"StatusChange",
"call":{
"id":"012PUFMMSOASNAK4807GK2LAESO0000I",
"state":"Released",

Value

Web Services APl Reference

158

Voice API Hangup

"callUuid":"012PUFMMSOASNAK4807GK2LAESO0000I",

"connId":"007102719260b012",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-
ba05-2ae39555b0d1",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]’

"dnis":"15000",
"callType":"Internal",
"capabilities": [

]I
"duration":"672",
"mute":"Off",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000I",
"path":"/calls/012PUFMMSOASNAK4807GK2LAESOOQOOI"
}I
"phoneNumber":"15000",
"extensions":{
"BusinessCall":0
}!

"messageType":"CallStateChangeMessage"
T

"channel":"/v2/me/calls"

Web Services APl Reference 159

Voice API SendDTMF

SendDTMF

This operation is part of the Voice API section of the Web Services API.

Overview

Sends the provided DTMF digits. You can send DTMF digits individually with multiple requests or
together with multiple digits in one request.

If your solution uses SIP Server, you might need to set the sip-dtmf-send-rtp option
to true for this request to succeed. Consult the SIP Server documentation for details.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName SendDtmf
digits A string consisting of one or more digits (0-9).
Sample
Request

POST api/v2/me/calls/012PUFMMSOASNAK4807GK2LAESO0000J]

"operationName": "SendDtmf",
Ildigitsll: II5II
)

Web Services APl Reference 160

Voice API

SendDTMF

HTTP response

"statusCode": 0
}

CometD notification

"data":{
"notificationType":"DtmfSent",
"call":{
"id":"012PUFMMSOASNAK4807GK2LAESO0000]",
"state":"Established",
"callUuid":"012PUFMMSOASNAK4807GK2LAES00000]",
"connId":"007102719260b013",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",
"participants": [

"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]I

"dnis":"15000",

"callType":"Internal",

"capabilities": [
"SingleStepTransfer",
"InitiateConference",
"Hold",
"SingleStepConference",
"InitiateTransfer",
"SendDtmf",
"DeleteUserData",
"AttachUserData",
"DeleteUserDataPair",
"Hangup",
"UpdateUserData"

]I

"duration":"27",

"mute":"Off",

"supervisorListeningIn":false,

"monitoredUserMuted":false,

"monitoring":false,

"uri":"http://127.0.0.1:8080/api/v2/me/calls/012PUFMMSOASNAK4807GK2LAES00000]",

"path":"/calls/012PUFMMSOASNAK4807GK2LAESO0000]"
}I
"phoneNumber":"15000",
"extensions":{
"BusinessCall":0
}I

"messageType":"CallStateChangeMessage"
I

"channel":"/v2/me/calls"

Web Services APl Reference

161

Voice API

MuteCall

MuteCall

This operation is part of the Voice API section of the Web Services API.

Overview

Mutes the call. While mute is on, the agent can hear the other participants on the call but other

participants cannot hear the agent.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter
operationName MuteCall
Sample
Request

POST api/v2/me/calls/00HLPA5Q24AT9D8VHOAOK2LAESOO000G

"operationName": "MuteCall"

}

HTTP response

{
"statusCode": 0

}

CometD notification

"data": {
"messageType": "CallStateChangeMessage",
"notificationType": "StatusChange",

"phoneNumber": "3001"

Value

Web Services APl Reference

162

Voice API

MuteCall

"call": {

"callType": "Internal",

"callUuid": "OOHLPA5Q24AT9D8VHOAGK2LAESO0000G",

"capabilities": [
"AttachUserData",
"SingleStepTransfer",
"InitiateTransfer",
"UpdateUserData",
"DeleteUserDataPair",
"Hangup",
"SendDtmf",
"DeleteUserData",
"InitiateConference",
"UnmuteCall",
"Hold",
"SingleStepConference",
"StartCallRecording"

]I

"connId": "0071026ce59fd010",

"deviceUri": "http://127.0.0.1:8090/api/v2/devices/7ef76a87-a60d-439d-

ae90-885e6259bf01",

}

}I

"dnis": "3002",

"duration": "1",

"id": "OOHLPA5Q24AT9D8VHOAOK2LAESOO000G",
"monitoredUserMuted": false,
"monitoring": false,

Ilmutell : IIOnII’

"participants": [

"digits": "3002",

"el64Number": "",
"formattedPhoneNumber": "3002",
"phoneNumber": "3002"

}I

{
"digits": "3003",
"el64Number": "",
"formattedPhoneNumber": "3003",
"phoneNumber": "3003"

}

]I

"path": "/calls/0OHLPA5Q24AT9D8VHOAOK2LAES00000G",
"recordingState": "Stopped",

"state": "Established",

"supervisorListeningIn": false,

"uri": "http://127.0.0.1:8090/api/v2/me/calls/0O0HLPA5Q24ATID8VHOAOK2LAESOO000G",

"extensions": {

I

"BusinessCall": O

"éhannel": "/v2/me/calls",

Web Services APl Reference

163

Voice API

UnmuteCall

UnmuteCall

This operation is part of the Voice API section of the Web Services API.

Overview

Unmutes a previously muted call.

Request URL
HTTP method
Required features

Parameters

Parameter

operationName

/api/v2/me/calls/{id}
POST

api-voice

UnmuteCall

Sample
Request
POST api/v2/me/calls/0OHLPA5Q24AT9D8VHOAOK2LAESOO000G
{
"operationName": "UnmuteCall"
}

HTTP response

"statusCode": 0
}

CometD notification

"data": {

"messageType": "CallStateChangeMessage",
"notificationType": "StatusChange",

"phoneNumber": "3001"
"call": {

Value

Web Services APl Reference

164

Voice API

UnmuteCall

"callType": "Internal",

"callUuid": "OOHLPA5Q24AT9D8VHOAOK2LAESO0000G",

"capabilities": [
"AttachUserData",
"SingleStepTransfer",
"InitiateTransfer",
"UpdateUserData",
"DeleteUserDataPair",
"Hangup",
"SendDtmf",
"DeleteUserData",
"InitiateConference",
"UnmuteCall",
"Hold",
"SingleStepConference",
"StartCallRecording"

]I

"connId": "0071026ce59fd0l0",

"deviceUri": "http://127.0.0.1:8090/api/v2/devices/7ef76a87-a60d-439d-

ae90-885e6259bf01",
"dnis": "3002",
"duration": "1",
"id": "OOHLPA5Q24AT9D8VHOAOK2LAESOO000G",
"monitoredUserMuted": false,
"monitoring": false,
"mute": "Off",
"participants": [

"digits": "3002",

"el64Number": "",
"formattedPhoneNumber": "3002",
"phoneNumber": "3002"

}I

{
"digits": "3003",
"el64Number": "",
"formattedPhoneNumber": "3003",
"phoneNumber": "3003"

ks

]I

"path": "/calls/0OHLPA5Q24AT9D8VHOAOK2LAESO0000G",
"recordingState": "Stopped",

"state": "Established",

"supervisorListeningIn": false,

"uri": "http://127.0.0.1:8090/api/v2/me/calls/0OOHLPA5Q24ATID8VHOAOK2LAESOO000G",

}I
"extensions": {
"BusinessCall": 0

}I
}

"’hannel": "/v2/me/calls",

Web Services APl Reference

165

Voice API SetCallDisposition

SetCallDisposition

This operation is part of the Voice API section of the Web Services API.

Overview

Sets the disposition for the specified call. If the call is active at the time of the request, Web Services
processes it by updating the key in the user data. If the call has already been released, then Web
Services sends the EventUserEvent to propagate the disposition to the reporting solution.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName SetCallDisposition
callUri The URI of the call to disposition.
callUuid The UUID of the call to disposition. You can get this
from the call resource.

disposition A string value for the call disposition.

An optional string value for the userdata key for
dispositionKey the call disposition. If not specified, Web Services
uses the disposition key configured for the server.

Sample

Request

POST api/v2/me/devices/631608b3-cebl-472b-bad5-2ae39555b0d1
{
"operationName": "SetCallDisposition",
"callUri": "http://127.0.0.1:8080/api/v2/calls/01RCC3N118B1VOSL807GK2LAESO00006",
"callUuid": "O1RCC3N118B1VOSL807GK2LAES000006",
"disposition": "Referred",
"dispositionKey": "DispositionCode"

Web Services APl Reference 166

Voice API SetCallDisposition

HTTP response

"statusCode": 0
}

CometD notification

If you send this request is sent while the call is still active, Web Services delivers a
CallStateChangeMessage. If the call has been released, there is no notification.

{
"data":{
"notificationType":"AttachedDataChanged",
"call":{
"id":"®@1RCC3N118B1V0OSL807GK2LAES000006",
"state":"Established",
"callUuid":"01RCC3N118B1VOSL807GK2LAES000006",
"connId":"0071027198180006",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-
ba05-2ae39555b0d1",
"participants": [

{
"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]I
"dnis":"15000",

"callType":"Internal",

"capabilities": [
"UpdateUserData",
"SendDtmf",
"InitiateConference",
"Hold",
"SingleStepTransfer"”,
"InitiateTransfer",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
"Hangup"

]I

"userData":{
"DispositionCode":"Referred"

}I

"duration":"262",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00006",
"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOQQ06"
}!
"phoneNumber":"15000",
"messageType":"CallStateChangeMessage"
1

"channel":"/v2/me/calls"

Web Services APl Reference 167

Voice API SingleStepConference

SingleStepConference

This operation is part of the Voice API section of the Web Services API.

Overview

Performs a single-step conference, adding the specified participant to the call.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName SingleStepConference
destination A JSON object that includes the number to dial.

An optional parameter that is used by Web
location Services to set the location attribute for the
corresponding T-Server requests.

An optional JSON object that includes key/value

userbata data to be included with the call.
Sample 1
Request
POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00007
{
"operationName": "SingleStepConference",

"destination": {
"phoneNumber": "15002"
}
}

HTTP response

{
"statusCode": 0

Web Services APl Reference

168

Voice API

SingleStepConference

CometD notification

"data":{
"notificationType":"ParticipantsUpdated",
"call":{

"id":"O@1RCC3N118B1VOSL807GK2LAES000007",
"state":"Established",
"callUuid":"01RCC3N118B1VOSL807GK2LAESO00007",
"connId":"0071027198180007",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

}'

"participants":[

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"

}I
{
"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]I
"dnis":"15001",

"callType":"Internal",
"capabilities": [
"UpdateUserData",
"SendDtmf",
"InitiateConference",
||H0'Ld|| E
"SingleStepTransfer",
"InitiateTransfer",
"RemoveParticipantFromConference",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
"MuteCall",
"Hangup"
]I
"userData":{
"FirstConferencePartyDN":"15000"
}I
"duration":"52",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,

"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00007",

"path":"/calls/01RCC3N118B1VOSL807GK2LAESO00007"

"phoneNumber":"15000",
"extensions": {

}'

"BusinessCall":0

"messageType":"CallStateChangeMessage"

Web Services APl Reference

169

Voice API SingleStepConference

"channel":"/v2/me/calls"

Sample 2

Request

POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00008

"operationName": "SingleStepConference",
"destination": {

"phoneNumber": "15002"
}I

"userData": {
"AccountNumber": "12345"
}

}

HTTP response

"statusCode": 0
}

CometD notification

"data":{

"notificationType":"ParticipantsUpdated",

"call":{
"id":"O@1RCC3N118B1VOSL807GK2LAES000008",
"state":"Established",
"callUuid":"01RCC3N118B1VOSL807GK2LAES000008",
"connId":"0071027198180008",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": |

{
"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"
}I
{
"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]I
"dnis":"15001",

"callType":"Internal",

"capabilities": [
"UpdateUserData",
"SendDtmf",

Web Services APl Reference 170

Voice API SingleStepConference

"InitiateConference",
"Hold",
"SingleStepTransfer",
"InitiateTransfer",
"RemoveParticipantFromConference",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
"MuteCall",
"Hangup"
]I
"userData":{
"AccountNumber":"12345",
"FirstConferencePartyDN":"15000"
}I
"duration":"64",
"mute":"Off",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00008",
"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOOOO8"
}I
"phoneNumber":"15000",
"extensions":{
"BusinessCall":0
}l

"messageType":"CallStateChangeMessage"
I

"channel":"/v2/me/calls"

Web Services APl Reference 171

Voice API InitiateConference

InitiateConference

This operation is part of the Voice API section of the Web Services API.

Overview

Initiates a two-step conference to the specified destination. This operation places the existing call on
hold and creates a new call in the dialing state. After initiating the conference you can use the
CompleteConference operation to complete the conference and bring all parties into the same call.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName InitiateConference
destination AIJSON object that includes the number to be
dialed.
An optional parameter that is used by Web
location Services to set the location attribute for the
corresponding T-Server requests.
An optional JSON object that includes key/value
userbata data to be included with the call.
Sample
Request

POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00009
{

"operationName": "InitiateConference",
"destination": {
"phoneNumber": "15002"
}
}

Web Services APl Reference 172

Voice API InitiateConference

HTTP response

"statusCode": 0
}

CometD notification

The first notification is that the initial call has been placed on hold:

"data":{

"notificationType":"StatusChange",

"call":{
"id":"@1RCC3N118B1VOSL807GK2LAES000009",
"state":"Held",
"callUuid":"01RCC3N118B1VOSL807GK2LAESO00009",
"connId":"0071027198180009",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]I

"dnis":"15001",
"callType":"Internal",
"capabilities": [
"UpdateUserData",
"Retrieve",
"InitiateConference",
"SingleStepTransfer",
"InitiateTransfer",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
"Hangup"
]I
"duration":"31",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00009",
"path":"/calls/01RCC3N118B1VOSL807GK2LAESOO0009"
Iy
"phoneNumber":"15000",
"extensions": {
"BusinessCall":0
}I
"messageType":"CallStateChangeMessage"
}I
"channel":"/v2/me/calls"

}

The second notification is that the new consult call is dialing:

Web Services APl Reference 173

Voice API InitiateConference

"data":{

"notificationType":"StatusChange",

"call":{
"id":"O@1RCC3N118B1VOSL807GK2LAESOOOO0A",
"state":"Dialing",
"callUuid":"O1RCC3N118B1VOSL807GK2LAESOO000A",
"connId":"007102719818000a",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": |

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"
}
]I

"dnis":"15002",
"callType":"Consult",
"capabilities":[
"UpdateUserData",
"SendDtmf",
"SwapCalls",
"AttachUserData",
"DeleteUserDataPair",
"DeleteUserData",
"Hangup",
"CompleteTransfer"
]I
"parentCallUri":"http://127.0.0.1:8080/api/v2/me/calls/
O1RCC3N118B1VOSL807GK2LAESO00009",
"duration":"Q",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOOO0O0A",
"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOOO0A",
"parentCallPath":"/calls/01RCC3N118B1VOSL807GK2LAESOOO009"
}I
"phoneNumber":"15000",
"messageType":"CallStateChangeMessage"
T

"channel":"/v2/me/calls"

Web Services APl Reference 174

Voice API CompleteConference

CompleteConference

This operation is part of the Voice API section of the Web Services API.

Overview

Completes a previously initiated conference. Once completed, the two separate calls are brought
together so that all three parties are participating in the same call.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName CompleteConference

You can use this optional parameter to specify the
consult call that should be used to complete the
conference. If not provided, Web Services
determines the related call.

consultCallUri

Sample
Request
POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOO000B
{
"operationName": "CompleteConference"
}

HTTP response

"statusCode": 0
}

Web Services APl Reference 175

Voice API CompleteConference

CometD notification

The first notification is that the consult call is released:

"data":{

"notificationType":"StatusChange",

"call":{
"id":"@1RCC3N118B1VOSL807GK2LAESO0000B",
"state":"Released",
"callUuid":"01RCC3N118B1VOSL807GK2LAESOO006GB",
"connId":"007102719818000b",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"
}
]I

"dnis":"15002",
"callType":"Consult",
"capabilities": [

]I
"parentCallUri":"http://127.0.0.1:8080/api/v2/me/calls/
O1RCC3N118B1VOSL807GK2LAESO00009",
"duration":"24",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO0000B",
"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOOO0B",
"parentCallPath":"/calls/01RCC3N118B1VOSL807GK2LAESO00009"
}'
"phoneNumber":"15000",
"extensions": {
"BusinessCall":0
}'

"messageType":"CallStateChangeMessage"
I

"channel":"/v2/me/calls"

The second notification is that the participants for the original call have been updated to include the
new party:

"data":{

"notificationType":"ParticipantsUpdated",

"call":{
"id":"®@1RCC3N118B1V0OSL807GK2LAES000009",
"state":"Established",
"callUuid":"01RCC3N118B1VOSL807GK2LAES000009",
"connId":"0071027198180009",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

Web Services APl Reference 176

Voice API

CompleteConference

3

}I

"participants": [

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"

}'
{
"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]’
"dnis":"15001",

"callType":"Internal",
"capabilities": [

]’

"UpdateUserData",
"SendDtmf",
"InitiateConference",
||H0‘Ld|| ,
"SingleStepTransfer",
"InitiateTransfer",
"RemoveParticipantFromConference",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
"MuteCall",

IlHangupll

"duration":"748",
"mute":"Off",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00009",

"path":"/calls/01RCC3N118B1VOSL807GK2LAESO00009"

"phoneNumber":"15000",
"extensions":{
"BusinessCall":0

}I

"messageType":"CallStateChangeMessage"

"channel":"/v2/me/calls"

Web Services APl Reference

177

Voice API RemoveParticipantFromConference

RemoveParticipantFromConference

This operation is part of the Voice API section of the Web Services API.

Overview

Removes the specified participant from the conference call. This operation can only be performed by
the owner of the conference call or a supervisor during monitoring.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName RemoveParticipantFromConference
participant '(I:'Qltle participant to be removed from the conference
Sample
Request
POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOO0000
{
"operationName": "RemoveParticipantFromConference",
"participant": "15001"
)

HTTP response

"statusCode": 0
)

CometD notification

{

Web Services APl Reference 178

Voice API

RemoveParticipantFromConference

"data":{
"notificationType":"ParticipantsUpdated",
"call":{
"id":"@1RCC3N118B1VOSL807GK2LAES000000",
"state":"Established",
"callUuid":"01RCC3N118B1VOSL807GK2LAESO00000",
"connId":"0071027198180018",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": |

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"
}
]I

"dnis":"15001",

"callType":"Internal",

"capabilities": [
"UpdateUserData",
"SendDtmf",
"InitiateConference",
"Hold",
"SingleStepTransfer",
"InitiateTransfer",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
IlHangupll

]I

"duration":"43",

Ilmu.tell : Iloffll)

"supervisorListeningIn":false,

"monitoredUserMuted":false,

"monitoring":false,

"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO00000",

"path":"/calls/01RCC3N118B1VOSL807GK2LAESO00000"
}I
"phoneNumber":"15000",
"extensions":{
"BusinessCall":0
}I

"messageType":"CallStateChangeMessage"
I

"channel":"/v2/me/calls"

Web Services APl Reference

179

Voice API

ClearCall

ClearCall

This operation is part of the Voice API section of the Web Services API.

Value

Overview
Ends the conference call for all parties. This can be performed by any agent participating the
conference.
Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter
operationName ClearcCall
Sample
Request

POST api/v2/me/calls/128ff83e-b474-47e6-b6de-0e63cd707004
{

"operationName": "ClearCall"

}

HTTP response

{
"statusCode":0

}

CometD notification

{
"notificationType":"StatusChange",
"call":{
"id":"@OBVDIGLQGB8P27CNCAGK2LAESOOO00A",
"state":"Released",

Web Services APl Reference

180

Voice API ClearCall

"callUuid":"00BVDI9GLQGB8P27CNC4GK2LAESOOO0O0GA",

"connId":"007102786d53400a",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/128ff83e-b474-47e6-b64e-0e63cd707004",
"participants":|[

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"

}I
{
"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
b
]I
"dnis":"15001",

"callType":"Internal",
"capabilities": [

]I

"userData": {
"FirstConferencePartyDN":"15000"

}I

"duration":"68",
"mute":"0ff",
"uri":"http://127.0.0.1:8080/api/v2/me/calls/00BVDIGLQGB8P27CNC4GK2LAESOOO00A",
"path":"/calls/00BVD9GLQGB8P27CNC4GK2LAESOOOO0A"

I

"phoneNumber":"15000",

"extensions":{
"BusinessCall":1

I

"messageType":"CallStateChangeMessage"

Web Services APl Reference 181

Voice API SingleStepTransfer

SingleStepTransfer

This operation is part of the Voice API section of the Web Services API.

Overview

Performs a single-step transfer to the specified destination.

Request URL /api/v2/me/calls/{id}
HTTP method POST
Required features api-voice
Parameters
Parameter Value
operationName SingleStepTransfer
destination ﬁii\?ng object that includes the number to be

An optional parameter that is used by Web
location Services to set the location attribute for the
corresponding T-Server requests.

An optional JSON object that includes key/value

userData data to be included with the call.

Sample 1

Request

POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOO000D

"operationName": "SingleStepTransfer",
"destination": {
"phoneNumber": "15002"
}
}

HTTP response

{

Web Services APl Reference

182

Voice API SingleStepTransfer

"statusCode": 0
b

CometD notification

"data":{

"notificationType":"StatusChange",

"call":{
"id":"@1RCC3N118B1VOSL807GK2LAES00006D",
"state":"Released",
"callUuid":"0@1RCC3N118B1VOSL807GK2LAESO0006D",
"connId":"007102719818000d",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants":[

"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]I

"dnis":"15001",
"callType":"Internal",
"capabilities": [

]I

"duration":"20",

Ilmutell : Iloffll ,

"supervisorListeningIn":false,

"monitoredUserMuted":false,

"monitoring":false,

"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO0000D",

"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOOOOD"
Iy
"phoneNumber":"15000",
"extensions":{

"BusinessCall":0

}I
"messageType":"CallStateChangeMessage"
}I
"channel":"/v2/me/calls"
b
Sample 2
Request

POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOO000G
{
"operationName": "SingleStepTransfer",
"destination": {
"phoneNumber": "15002"
}I

"userData": {

Web Services APl Reference 183

Voice API SingleStepTransfer

"TransferReason": "Escalation",
"TransferAgent": "WillardC"
}
)

HTTP response

"statusCode": 0
}

CometD notification

"data":{

"notificationType":"StatusChange",

"call":{
"id":"©@1RCC3N118B1VOSL807GK2LAES00000G",
"state":"Released",
"callUuid":"©@1RCC3N118B1VOSL807GK2LAESO0000G",
"connId":"0071027198180010",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": |

"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}

]!

"dnis":"15001",

"callType":"Internal",

"capabilities": [

]I
"userData":{
"TransferAgent":"WillardC",
"TransferReason":"Escalation"
}I
"duration":"40",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESO0000G",
"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOOOOG"
}I
"phoneNumber":"15000",
"extensions": {
"BusinessCall":0
}I

"messageType":"CallStateChangeMessage"
T

"channel":"/v2/me/calls"

Web Services APl Reference 184

Voice API

InitiateTransfer

Initiatelransfer

This operation is part of the Voice API section of the Web Services API.

Overview

Initiates a two-step transfer to the specified destination. After initiating the transfer, you can use the
CompleteTransfer operation to complete the transfer.

Request URL
HTTP method
Required features

Parameters

Parameter
operationName

destination
location

userData

Sample 1

Request

/api/v2/me/calls/{id}
POST

api-voice

Value
InitiateTransfer

A JSON object that includes the number to be
dialed.

An optional parameter that is used by Web
Services to set the location attribute for the
corresponding T-Server requests.

An optional JSON object that includes key/value
data to be included with the call.

POST api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOOOOOM

{

"operationName": "InitiateTransfer",
"destination": {
"phoneNumber": "15002"
}
¥

Web Services APl Reference

185

Voice API

InitiateTransfer

HTTP response

"statusCode": 0
}

CometD notification

The first notification is that the original call has been placed on hold:

"data":{
"notificationType":"StatusChange",
"call":{
"id":"@1RCC3N118B1VOSL807GK2LAESO000OM",
"state":"Held",
"callUuid":"01RCC3N118B1VOSL807GK2LAESOOO0OM",
"connId":"0071027198180011",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",
"participants": [

"el64Number":"",
"formattedPhoneNumber":"15001",
"phoneNumber":"15001",
"digits":"15001"
}
]I

"dnis":"15001",

"callType":"Internal",

"capabilities": [
"UpdateUserData",
"SwapCalls",
"InitiateConference",
"SingleStepTransfer",
"InitiateTransfer",
"AttachUserData",
"DeleteUserDataPair",
"SingleStepConference",
"DeleteUserData",
"Hangup",
"CompleteTransfer"

]I

"duration":"99",

"mute":"0ff",

"supervisorListeningIn":false,

"monitoredUserMuted":false,

"monitoring":false,

"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOO00OM",

"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOOOOM"

}I
"phoneNumber":"15000",
"messageType":"CallStateChangeMessage"

}I
"channel":"/v2/me/calls"
}
The second notification is of the new consult call dialing:

{

Web Services APl Reference

186

Voice API InitiateTransfer

"data":{

"notificationType":"StatusChange",

"call":{
"id":"O@1RCC3N118B1VOSL807GK2LAESOOOOON",
"state":"Dialing",
"callUuid":"01RCC3N118B1VOSL807GK2LAESOOOOON",
"connId":"0071027198180013",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/631608b3-cebl-472b-

ba05-2ae39555b0d1",

"participants": |

"el64Number":"",
"formattedPhoneNumber":"15002",
"phoneNumber":"15002",
"digits":"15002"
}
]I

"dnis":"15002",
"callType":"Consult",
"capabilities": [
"UpdateUserData",
"SendDtmf",
"SwapCalls",
"AttachUserData",
"DeleteUserDataPair",
"DeleteUserData",
"Hangup",
"CompleteTransfer"
]'
"parentCallUri":"http://127.0.0.1:8080/api/v2/me/calls/
O1RCC3N118B1VOSL807GK2LAESOOO0OM",
"duration":"Q",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"monitoring":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/01RCC3N118B1VOSL807GK2LAESOOOOON",
"path":"/calls/01RCC3N118B1VOSL807GK2LAESOOOOON",
"parentCallPath":"/calls/01RCC3N118B1VOSL807GK2LAESOOOOOH"
}I
"phoneNumber":"15000",
"messageType":"CallStateChangeMessage"
T

"channel":"/v2/me/calls"

Sample 2

The following examples describe a full two-step transfer scenario from start to finish.

First, the agent receives a notification of the inbound call:

"data":{
"notificationType":"StatusChange",
"call":{
"id":"011DJV5JI898NB2LO40OOVTAES000005",
"state":"Ringing",
"callUuid":"011DJV5JI898NB2LO40OOVTAESO00005",

Web Services APl Reference 187

Voice API InitiateTransfer

"connId":"007102385535e005",

"deviceUri":"http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-
b65e-5768c61f7d4a",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"5000",
"phoneNumber":"5000",
"digits":"5000"
}
]I

"dnis":"5005",
"callType":"Internal",
"capabilities": [
"UpdateUserData",
"DeleteUserData",
"AttachUserData",
"DeleteUserDataPair",
"Answer"
]I
"duration":"0",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/011DIV5]1898NB2LO40OOVTAESO00005",
"path":"/calls/011DJV5JI898NB2L0O40OOVTAESOOOOO5"
}!
"phoneNumber":"5005",
"extensions":{
"WrapUpTime":0,
"BusinessCall":0
}!
"messageType":"CallStateChangeMessage"
I
"channel":"/v2/me/calls"

}
The agent sends a request to answer the call:

POST api/v2/me/calls/011DJV5]I898NB2LO400OVTAESO00005
{

"operationName": "Answer"

b
The agent receives a notification that the call has been established:

{
"data":{
"notificationType":"StatusChange",
"call":{
"id":"011DJV5JI898NB2LO4OOOVTAESO00005",
"state":"Established",
"callUuid":"011DJV5JI898NB2L040OOVTAESO00005",
"connId":"007102385535e005",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-
b65e-5768c61f7d4a",
"participants": [
{
"el64Number":"",
"formattedPhoneNumber":"5000",
"phoneNumber":"5000",
"digits":"5000"

Web Services APl Reference 188

Voice API InitiateTransfer

}
]'

"dnis":"5005",
"callType":"Internal",
"capabilities": [
"UpdateUserData",
"SingleStepConference",
"DeleteUserData",
"Hangup",
"SendDtmf",
"Hold",
"AttachUserData",
"SingleStepTransfer",
"InitiateConference",
"DeleteUserDataPair",
"InitiateTransfer"
]I
"duration":"10",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/011DIJV5]1898NB2LO40OOVTAESO00005",
"path":"/calls/011DJV5JI898NB2L0O40OOVTAESOOQOO5"
}!
"phoneNumber":"5005",
"extensions": {
"WrapUpTime":0,
"BusinessCall":0
}!
"messageType":"CallStateChangeMessage"
I
"channel":"/v2/me/calls"

}
The agent initiates the two-step transfer:

POST api/v2/me/calls/011DJV5]I898NB2LO400OVTAESO00005
{

"operationName": "InitiateTransfer",
"destination": {

"phoneNumber": "5001"
}

b
The agent receives notification that the first call has been held:

{
"data":{
"notificationType":"StatusChange",
"call":{
"id":"011DJV5JI898NB2LO4OOOVTAESO00005",
"state":"Held",
"callUuid":"011DJV5JI898NB2L040OOVTAESO00005",
"connId":"007102385535e005",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-
b65e-5768c61f7d4a",
"participants": [
{
"el64Number":"",
"formattedPhoneNumber":"5000",
"phoneNumber":"5000",
"digits":"5000"

Web Services APl Reference 189

Voice API InitiateTransfer

}
]'

"dnis":"5005",
"callType":"Internal",
"capabilities": [
"UpdateUserData",
"SingleStepConference",
"DeleteUserData",
"Hangup",
"Retrieve",
"AttachUserData",
"SingleStepTransfer",
"InitiateConference",
"DeleteUserDataPair",
"InitiateTransfer"
]I
"duration":"36",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/011DIJV5]1898NB2LO40OOVTAESO00005",
"path":"/calls/011DJV5JI898NB2L0O40OOVTAESOOQOO5"
}I
"phoneNumber":"5005",
"extensions":{
"WrapUpTime":0,
"BusinessCall":0
}!
"messageType":"CallStateChangeMessage"
I
"channel":"/v2/me/calls"

}

and that the consult call is now dialing:

"data":{

"notificationType":"StatusChange",

"call":{
"id":"011DJV5JI898NB2LO40OOVTAES000006",
"state":"Dialing",
"callUuid":"011DJV5JI898NB2L0400OVTAES000006",
"connId":"007102385535e006",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-

b65e-5768c61f7d4a",

"participants": [

{
"el64Number":"",
"formattedPhoneNumber":"5001",
"phoneNumber":"5001",
"digits":"5001"
}
]I
"dnis":"5001",

"callType":"Consult",

"capabilities": [
"UpdateUserData",
"DeleteUserData",
"Hangup",
"SwapCalls",
"CompleteTransfer",
"SendDtmf",
"AttachUserData",

Web Services APl Reference 190

Voice API InitiateTransfer

"DeleteUserDataPair"
]I
"parentCallUri":"http://127.0.0.1:8080/api/v2/me/calls/
011DJV5JI898NB2LO40OOVTAESOO0005",
"duration":"0",
"mute" : "Off" ,
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"uri":"http://127.0.0.1:8080/api/v2/me/calls/011DIV5II898NB2LO40OOVTAESO00006",
"path":"/calls/011DJV5JI898NB2L0400OVTAESOOOO06"
}I
"phoneNumber":"5005",
"extensions":{
"WrapUpTime":0,
"BusinessCall":0
}I
"messageType":"CallStateChangeMessage"
T
"channel":"/v2/me/calls"

}
To complete, the agent requests completion of the transfer:

POST api/v2/me/calls/011DIV5]I898NB2LO400OVTAESO00006
{

"operationName": "CompleteTransfer"

}

The agent then receives notification that original call has been released:

"data":{

"notificationType":"StatusChange",

"call":{
"id":"011DJV5JI898NB2LO40OOVTAESOO0005",
"state":"Released",
"callUuid":"011DJV5JI898NB2L0400OVTAES000005",
"connId":"007102385535e005",
"deviceUri":"http://127.0.0.1:8080/api/v2/devices/efelab32-53f9-43ce-

b65e-5768c61f7d4a",

"participants": [

"el64Number":"",
"formattedPhoneNumber":"5000",
"phoneNumber":"5000",
"digits":"56000"
}

]!

"dnis":"5005",

"callType":"Internal",

"capabilities": [

]I
"duration":"48",
"mute":"0ff",
"supervisorListeningIn":false,
"monitoredUserMuted":false,
"uri:"http://127.0.0.1:8080/api/v2/me/calls/011DIV5]I898NB2LO40OOVTAESO00005",
"path":"/calls/011DJV5JI898NB2L0400OVTAESOOOOO5"
}I
"phoneNumber":"5005",
"exte