
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Using and Configuring Security Providers

Platform SDK Developer's Guide

5/12/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Using and Configuring Security Providers

Java

Tip
The contents of this page only apply to Java implementations.

Introduction

This page deals with Security Providers — an umbrella term describing the full set of cryptographic
algorithms, data formats, protocols, interfaces, and related tools for configuration and management
when used together. The primary reasons for bundling together such diverse tools are: compatibility,
support for specific standards, and implementation restrictions.

The security providers listed here were tested with the Platform SDK 8.1.1 implementation of TLS,
and found to work reliably when used with the configuration described below.

Java Cryptography Architecture Notes
Java Cryptography Architecture (JCA) provides a general API, and a pluggable architecture for
cryptography providers that supply the API implementation.

Some JCA providers (Sun, SunJSSE, SunRSA) come bundled with the Java platform and contain actual

Using and Configuring Security Providers

Platform SDK Developer's Guide 2

algorithm implementations, they are named PEM provider since they are used when working with
certificates in PEM files. Some other (SunPKCS11, SunMSCAPI) serve as a façade for external
providers. SunPKCS11 supports PKCS#11 standard for pluggable security providers, such as hardware
cryptographic processors, smartcards or software tokens. Mozilla NSS/JSS is an example of pluggable
software token implementation. SunMSCAPI provides access to Microsoft Cryptography API (MSCAPI),
in particular, to Windows Certificate Services (WSC).

PEM Provider: OpenSSL

Note: Working with certificates and keys is also covered in the Genesys 8.1 Security Deployment
Guide.

PEM stands for "Privacy Enhanced Mail", a 1993 IETF proposal for securing email using public-key
cryptography. That proposal defined the PEM file format for certificates as one containing a
Base64-encoded X.509 certificate in specific binary representation with additional metadata headers.
Here, the term is used to refer to Java built-in security providers that are used in conjunction with
certificates and private keys loaded from X.509 PEM files.

One of the most popular free tools for creating and manipulating PEM files is OpenSSL. Instructions
for installing and configuring OpenSSL are provided below.

Installing OpenSSL

OpenSSL is available two ways:

• distributed as a source code tarball: http://www.openssl.org/source/
• as a binary distribution (specific links are subject to change): http://www.openssl.org/related/

binaries.html

The installation process is very easy when using a binary installer; simply follow the prompts. The
only additional step required is to add the <OpenSSL-home>\bin folder to your Path system variable
so that OpenSSL can run from command line directly with the openssl command.

Configuring OpenSSL

The OpenSSL configuration file contains settings for OpenSSL itself, and also many field values for
the certificates being generated including issuer and subject names, host names and URIs, and so on.
You will need to customize your OpenSSL file with your own values before using the tool. An example
of a customized configuration file is available here.

The OpenSSL database consists of a set of files and folders, similar to the sample database described
in the table below. To start using OpenSSL, this structure should be created manually except for files
marked as "Generated by OpenSSL". Other files can be left empty as long as they exist in the
expected location.

OpenSSL database file/folder structure
File or Folder Generated by OpenSSL? Description

openssl-ca\
openssl-ca\openssl.cfg OpenSSL configuration file

Using and Configuring Security Providers

Platform SDK Developer's Guide 3

https://enu.docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSOpenSSLConfigurationFile

File or Folder Generated by OpenSSL? Description

openssl-ca\.rnd Yes File filled with random data, used
in key generation process.

openssl-ca\ca-password.txt

Stores the password for the CA
private key.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

openssl-ca\export-password.txt

Stores the password used to
encrypt the private keys when
exporting PKCS#12 files.
Reduces typing required, but is very
insecure. Should only be used for testing
and development.

openssl-ca\ca\ CA root folder.

openssl-ca\ca\certs\
All generated certificates are
copied here.
Folder contents can be safely deleted.

openssl-ca\ca\crl\
Generated CRLs stored here.
Folder contents can be safely deleted.

openssl-ca\ca\newcerts\

Certificates being generated are
stored here.
Folder contents can be safely deleted
once generation process is finished.

openssl-ca\ca\private\ CA private files.

openssl-ca\ca\private\cakey.pem Yes
CA private key.
Must be kept secret.

openssl-ca\ca\crlnumber Serial number of last exported
CRL.

openssl-ca\ca\serial Serial number of last signed
certificate.

openssl-ca\ca\cacert.pem Yes CA certificate.

openssl-ca\ca\index.txt Textual database of all
certificates.

Short Command Line Reference

• This section assumes that the OpenSSL bin folder was added to the local PATH environment variable,
and that openssl-ca is the current folder for all issued commands.

• Placeholders for parameters are shown in the following form: "<param-placeholder>".
• The frequently used parameter "<request-name>" should be a unique name that identifies the

certificate files.

Using and Configuring Security Providers

Platform SDK Developer's Guide 4

Task Description Command

Create a CA Certificate/Key

This is performed in three steps:

1. Create CA Private Key
2. Create CA Certificate
3. Export CA Certificate

1. openssl genrsa -des3 -out
ca\private\cakey.pem 1024
-passin file:ca-
password.txt

2. openssl req -config
openssl.cfg -new -x509
-days <days-ca-cert-is-
valid> -key ca\private\
cakey.pem -out ca\
cacert.pem -passin
file:ca-password.txt

3. openssl x509 -in ca\
cacert.pem -outform PEM
-out ca.pem

Create a Leaf Certificate/Key Pair

This is performed in three steps:

1. Create certificate request.
Certificate fields and
extensions are defined during
this step, and the certificate's
public and private keys are
created in the process.

2. Sign the request.
3. Export the certificate.

1. openssl req -new -nodes
-out requests\<request
name>-req.pem -keyout
requests\<request name>-
key.pem -days 3650
-config openssl.cfg

2. openssl ca -out
requests\<request-name>-
signed.pem -days 3650
-config openssl.cfg
-passin file:ca-
password.txt -infiles
requests\<request-name>-
req.pem

3. openssl pkcs12 -export
-in requests\<request-
name>-signed.pem -inkey
requests\<request-name>-
key.pem -certfile ca\
cacert.pem -name "<entry-
name-in-p12-file>" -out
<request-name>.p12
-passout file:export-
password.txt
openssl x509 -in
requests\<request-name>-
signed.pem -outform PEM
-out <request-name>-
cert.pem
openssl pkcs8 -topk8
-nocrypt -in
requests\<request-name>-
key.pem -out <request-
name>-key.pem

Using and Configuring Security Providers

Platform SDK Developer's Guide 5

Task Description Command

Revoke a Certificate
openssl ca -revoke
<certificate-pem-file>
-config openssl.cfg -passin
file:ca-password.txt

Export the CRL
openssl ca -gencrl -crldays
<days-crl-is-valid> -out
crl.pem -config openssl.cfg
-passin file:ca-password.txt

MSCAPI Provider: Windows Certificate Services

Note: Working with Windows Certificate Services (WCS) is also covered in Genesys 8.1 Security
Deployment Guide.

MSCAPI stands for Microsoft CryptoAPI. This provider offers the following features:

• It is available only on Windows platform.
• It implies usage of WCS to store and retrieve certificates, private keys, and CA certificates.
• Every Windows account has its own WCS storage, including the System account.
• Depends heavily on OS configuration and system security policies.
• Has its own set of supported cipher suites, different from what is provided by Java.
• When used with Java, please use the latest available version of Java to run the application.
• Java does not support CRLs located in WCS. With Java MSCAPI, CRL should be specified as a file.
• Does not accept passwords from Java code programmatically via CallbackHandler. If private key is

password-protected or prompt-protected, OS popup dialog will be shown to user.
• Certificates in WCS are configured using the Certificates snap-in for Microsoft Management Console

(MMC).

Note: If the version of Java being used does not support MSCAPI, a "WINDOWS-MY KeyStore not
available" exception appears in the application log. If you receive such exceptions, please consider
switching to a newer version of Java.

Starting Certificates Snap-in
There are two methods for accessing the Certificates Snap-in:

• Enter "certmgr.msc" at the command line. (This only gives access to Certificates for the current user
account.)

• Launch the MMC console and add the Certificates Snap-in for a specific account using the following
steps:
1. Enter "mmc" at the command line.
2. Select File > Add/Remove Snap-in... from the main menu.

Using and Configuring Security Providers

Platform SDK Developer's Guide 6

3. Select Certificates from the list of available snap-ins and click Add.
4. Select the account to manage certificates for (see Account Selection for important notes) and click

Finish.
5. Click OK.

Account Selection

It is important to place certificates under the correct Windows account. Some applications are run as
services under the Local Service or System account, while others are run under user accounts. The
account chosen in MMC must be the same as the account used by the application that certificates are
configured for, otherwise the application will not be able to access this WCS storage.

Note: Currently, most Genesys servers do not clearly report this error so WCS configuration must be
checked every time there is a problem with the MSCAPI provider.

Note: Configuration Manager is also a regular application in this aspect and can access WCS only for
the Local Computer (System) account on the local machine. It will not show certificates configured for
different accounts or on remote machines. Please consult your system and/or security administrator
for questions related to certificate configuration and usage.

Importing Certificates
There are many folders within WCS where certificates can be placed. Only two of them are used by
Platform SDK:

• Personal/Certificates – Contains application certificates used by applications to identify themselves.
• Trusted Root Certification Authorities/Certificates – Contains CA certificates used to validate remote

party certificates.

To import a certificate, right-click the appropriate folder and choose All Tasks > Import... from the
context menu. Follow the steps presented by the Certificate Import Wizard, and once finished the
imported certificate will appear in the certificates list.

Using and Configuring Security Providers

Platform SDK Developer's Guide 7

https://enu.docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSSecurityProviders#Account_Selection

Although WCS can import X.509 PEM certificate files, these certificates cannot be used as application
certificates because they do not contain a private key. It is not possible to attach a private key from a
PKCS#7 PEM file to the imported certificate. To avoid this problem, import application certificates only
from PKCS#12 files (*.p12) which contain a certificate and private key pair.

CA certificates do not have private keys attached, so it is safe to import CA certificates from X.509
PEM files.

It is possible to copy and paste certificates between folders and/or user accounts in the Management
Console, but this approach is not recommended due to WCS errors which may result in the pasted
certificate having an inaccessible private key. This error is not visible in Console, but applications
would not be able to read the private key. A recommended and reliable workaround is to export the
certificate to a file and then import from that file.

If you encounter the following error in the application log: “The credentials supplied to the package
were not recognized”, the most likely cause is due to the private key being absent or inaccessible. In
this case try deleting the certificate from WCS and re-importing it.

Importing CRL Files
CRL files can be imported to the following folder in WCS:

Using and Configuring Security Providers

Platform SDK Developer's Guide 8

• Trusted Root Certification Authorities/Certificate Revocation List

The import procedure is the same as for importing certificate. CRL file types are automatically
recognized by the import wizard.

Note: Although an MSCAPI provider may choose to use CRL while validating remote party
certificates, this functionality is not guaranteed and/or supported by Platform SDK. Platform SDK
implements its own CRL matching logic using CRL PEM files.

PKCS11 Provider: Mozilla NSS

PKCS11 stands for the PKCS#11 family of Public-Key Cryptography Standards (PKCS), published by
RSA Laboratories. These standards define platform-independent API-to-cryptographic tokens, such as
Hardware Security Modules (HSM) and smart cards, allowing you to connect to external certificate
storage devices and/or cryptographic engines.

In Java, the PKCS#11 interface is a simple pass-through and all processing is done externally. When
used together with a FIPS-certified security provider, such as Mozilla NSS, the whole provider chain is
FIPS-compliant.

Platform SDK uses PKCS11 because it is the only way to achieve FIPS-140 compliance with Java.

Installing Mozilla NSS
Currently Platform SDK only supports FIPS when used with the Mozilla NSS security provider. (Java has
FIPS certification only when working with a PKCS#11-compatible pluggable security provider, and the
only provider with FIPS certification and Java support is Mozilla NSS.)

Note: In theory, BSafe can be used since it supports JCA interfaces. However, Platform SDK was not
tested with RSA BSafe and such system would not be FIPS-certifiable as a while.

Generally, some security parameters and data must be configured on client host, requiring the
involvement of a system/security administrator. At minimum, the client host must have a copy of the
CA Certificate to be able to validate the Configuration Server certificate. The exact location of the CA
certificate depends on the security provider being used. It can be present as a PEM file, Java Keystore
file, a record in WCS, or as an entry in the Mozilla NSS database. Once the application is connected to
Configuration Server, the Application Template Application Block can be used to extract connection
parameters from Configuration Server and set up TLS.

Mozilla NSS is the most complex security provider to deploy and configure. In order to use NSS, the
following steps must be completed:

1. Deploy Mozilla NSS.
2. Create Mozilla NSS database (a "soft token" in terms of NSS), and set it to FIPS mode.
3. Adjust the Java security configuration, or implement dynamic loading for the Mozilla NSS provider.
4. Import the CA certificate to the Mozilla NSS database.
5. Use the Platform SDK interface to select PKCS11 as a provider (with no specific configuration options

required).

Using and Configuring Security Providers

Platform SDK Developer's Guide 9

Configuring FIPS Mode in Mozilla NSS
To configure FIPS mode in Mozilla NSS, create a file named nss-client.cfg in Mozilla NSS deployment
folder with the following values configured:

• name - Name of a software token.
• nssLibraryDirectory - Library directory, located in the Mozilla NSS deployment folder.
• nssSecmodDirectory - Folder where the Mozilla NSS database for the listed software token is located.
• nssModule - Indicates that FIPS mode should be used.

An example is provided below:

name = NSSfips
nssLibraryDirectory = C:/nss-3.12.4/lib
nssSecmodDirectory = C:/nss-3.12.4/client
nssModule = fips

More information about configuring FIPS mode can be found using external resources:

• https://davidvaleri.wordpress.com/2010/10/19/using-nss-for-fips-140-2-compliant-transport-security-in-
cxf/ external sources

Configuring FIPS Mode in Java Runtime Environment (JRE)
To configure your Java runtime to use Mozilla NSS, the java.security file should be located in Java
deployment folder and edited as shown below:

(Changes are shown in bold red, insertions are shown in bold blue)

#
List of providers and their preference orders (see above):
#
security.provider.1=sun.security.provider.Sun
security.provider.2=sun.security.rsa.SunRsaSign
security.provider.3=sun.security.ec.SunEC
#security.provider.4=com.sun.net.ssl.internal.ssl.Provider
security.provider.4=com.sun.net.ssl.internal.ssl.Provider SunPKCS11-NSSfips
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
security.provider.7=com.sun.security.sasl.Provider
security.provider.8=org.jcp.xml.dsig.internal.dom.XMLDSigRI
security.provider.9=sun.security.smartcardio.SunPCSC
security.provider.10=sun.security.mscapi.SunMSCAPI
security.provider.11=sun.security.pkcs11.SunPKCS11 C:/nss-3.12.4/nss-client.cfg

After those updates are complete, the Java runtime instance works with FIPS mode, with only the
PKCS#11/Mozilla NSS security provider enabled.

Short Command Line Reference
Please refer to the following reference for more information:

• https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Tools

Using and Configuring Security Providers

Platform SDK Developer's Guide 10

Task Command

Create CA Certificate
certutil -S -k rsa -n "<CA-cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "CTu,u,u" -m 600 -v 24
-d ./client -f "<keystore-password-file>"

Import CA Certificate
certutil -A -a -n “<CA-cert-name>” -t
"CTu,u,u" -i <ca-cert-file> -d ./client -f
"<keystore-password-file>"

Create New Leaf Certificate

certutil -S -k rsa -n "<cert-name>" -s
"CN=Test CA, OU=Miratech, O=Genesys,
L=Kyiv, C=UA" -x -t "u,u,u" -m 666 -v 24 -d
./client -f "<keystore-password-file>" -z
"<noise-file>"

Import Leaf Certificate
pk12util -i <cert-file.p12> -n <cert-name>
-d ./client -v -h "NSS FIPS 140-2
Certificate DB" -K <keystore-password>

Create CRL
crlutil -d ./client -f "<keystore-password-
file>" -G -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512

Modify CRL
crlutil -d ./client -f "<keystore-password-
file>" -M -c "<crl-script-file>" -n "<CA-
cert-name>" -l SHA512 -B

Show Certificate Information certutil -d ./client -f "<keystore-
password-file>" -L -n "<cert-name>"

Show CRL Information crlutil -d ./client -f "<keystore-password-
file>" -L -n "<CA-cert-name>"

List Certificates certutil -d ./client –L
List CRLs crlutil -L -d ./client

JKS Provider: Java Built-in

This provider is supported by the Platform SDK Commons library, but the Application Template
Application Block does not support this provider due to compatibility guidelines with Genesys
Framework Deployment.

This provider can only be used when TLS is configured programmatically by Platform SDK users.

Short Command Line Reference
Refer to the following references for more information:

• https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
• https://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

Task Command
Creating and Importing - These commands allow you to generate a new Java Keytool keystore file,

Using and Configuring Security Providers

Platform SDK Developer's Guide 11

https://enu.docs.genesys.com/Documentation/IW/9.0.x/Developer/TLSUsingPSDKCommonsLibrary

Task Command
create a Certificate Signing Request (CSR), and import certificates. Any root or intermediate certificates
will need to be imported before importing the primary certificate for your domain.

Generate a Java keystore and key pair keytool -genkey -alias mydomain -keyalg RSA
-keystore keystore.jks -keysize 2048

Generate a certificate signing request (CSR) for an
existing Java keystore

keytool -certreq -alias mydomain -keystore
keystore.jks -file mydomain.csr

Import a root or intermediate CA certificate to an
existing Java keystore

keytool -import -trustcacerts -alias root
-file Thawte.crt -keystore keystore.jks

Import a signed primary certificate to an existing
Java keystore

keytool -import -trustcacerts -alias
mydomain -file mydomain.crt -keystore
keystore.jks

Generate a keystore and self-signed certificate
keytool -genkey -keyalg RSA -alias
selfsigned -keystore keystore.jks
-storepass password -validity 360 -keysize
2048

Java Keytool Commands for Checking - If you need to check the information within a certificate, or
Java keystore, use these commands.
Check a stand-alone certificate keytool -printcert -v -file mydomain.crt
Check which certificates are in a Java keystore keytool -list -v -keystore keystore.jks

Check a particular keystore entry using an alias keytool -list -v -keystore keystore.jks
-alias mydomain

Other Java Keytool Commands

Delete a certificate from a Java Keytool keystore keytool -delete -alias mydomain -keystore
keystore.jks

Change a Java keystore password keytool -storepasswd -new new_storepass
-keystore keystore.jks

Export a certificate from a keystore keytool -export -alias mydomain -file
mydomain.crt -keystore keystore.jks

List Trusted CA Certs keytool -list -v -keystore $JAVA_HOME/jre/
lib/security/cacerts

Import New CA into Trusted Certs
keytool -import -trustcacerts -file /path/
to/ca/ca.pem -alias CA_ALIAS -keystore
$JAVA_HOME/jre/lib/security/cacerts

Using and Configuring Security Providers

Platform SDK Developer's Guide 12

	Platform SDK Developer's Guide
	Using and Configuring Security Providers

