3 GENESYS

This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

EWT and URS

Expected Wait Time (EWT) in URS - White Paper

4/9/2025

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Contents

¢ 1 Expected Wait Time (EWT) in URS - White Paper
* 1.1 Function: InVQWaitTime (Virtual Queue)
* 1.2 Web Method: urs/call/connid/lvg/VirtualQueueName?aqt=stat/urs/urs2
* 1.3 Web Method: urs/call/connid/query

1.4 Challenges
e 1.5 Router's Queues

1.6 Virtual Queues

¢ 1.7 Lifetime - VQ versus Router’s Queue

1.8 Stat Server Data

¢ 1.9 Router’'s Queues - EWT Methods
1.10 Quit Rate

* 1.11 Virtual Queue - EWT Methods

EWT and URS

Expected Wait Time (EWT) in URS - White Paper

Expected Wait Time (EWT) in URS - White
Paper

This document discusses how Expected Wait Time (EWT) and its related statistics, functions, and
methods are utilized in Universal Routing Server (URS). The following sections aim to provide a good

understanding of the different variations in calculating EWT and their impacts, from a URS
standpoint.

Function: InVQWaitTime (Virtual Queue)

This section lists the variations in usage for the InVQWaitTime (Virtual Queue) function.

¢ When a Virtual Queue is associated with an agent group, then URS takes Stat Server’'s EWT for the
Virtual Queue and adjusts it relative to the call’s position in the queue.

¢ |If the Virtual Queue is NOT associated with an agent group, then URS calculates AverageHandlingTime
for all agents from the Virtual Queue and multiplies it by the call’s position in the queue. While

calculating AverageHandlingTime, URS tries to consider cases of multi-skilled agents and multiple URS
instances.

The above applies when using the SData[Virtual Queue, StatExpectedWaitingTime]
funtion. URS can count AverageHandlingTime for a Virtual Queue itself only if it has
(or had) calls in it.

Web Method: urs/call/connid/lvg/VirtualQueueName?aqt=stat/
urs/urs2

This web method provides more information than the InvQWaitTime function and also allows you to
control exactly how to count EWT. The JSON object returned with this method contains an EWT
parameter, which is semantically close to the value returned by InVQWaitTime. The aqt input
parameter allows more control in accounting for EWT stats.

e stat - identical to the value returned by the InVQWaitTime function.

e urs2 - similar to the InvVQWaitTime function, but URS always calculates the AverageHandlingTime by
itself (regardless of whether the Virtual Queue is configured with agent group).

e urs - default value, like urs2, but instead of AverageHandlingTime, URS uses AverageQuittingTime
from the Virtual Queue. URS counts this average by itself based on the last 32 calls distributed from

EWT and URS 3

Expected Wait Time (EWT) in URS - White Paper

the queue.

Note: The lvg method can also be applied to groups of virtual queues. If the virtual queue name
ends with .GQ, URS calculates EWT and other parameters for the entire collection of Virtual Queues.
This and any other web method can be called from a routing strategy with the RequestRouter
function. For example, RequestRouter[‘##SELF’, ’'urs/call/connid/1lvq/VirtualQueueName’,
"aqt=stat’,’’, ‘' 1.

Web Method: urs/call/connid/query

This method is applicable when the use of Virtual Queues are not appropriate or not possible. For
example, Virtual Queues that include calls that might wait for totally different targets or have
different thresholds, etc. This method uses the Router’'s Queues (all calls in Router’s Queues wait for
the same targets and have the same thresholds).

This method internally uses RvgData[] URS function to get aggregation information about all
Router’s Queues that the call is in.

The JSON object returned with this query method contains among other attributes:

e min_rvq_ewt - Minimal EWT among all the Router’s Queues counted using AverageHandlingTime
provided by URS.

e min_ewt - Minimal EWT among all the Router’s Queues counted using AverageQuittingTime provided
by URS.

AverageHandlingTime that URS provides for the Router’s Queue does not consider
whether agents are multi-skilled or cases of multiple URS instances.

Challenges

Calculating EWT for a call is in itself a complex task and is usually further complicated by the
absolute absence of restrictions that strategies might use when placing calls in queues. This results
in arbitrary many-to-many relations between calls and agents and significantly erodes the concept of
a call’s position in queue. Another factor that complicates the task is performance. URS must
count EWT very quickly so as not to affect its primary task of routing.

The following methods that we use, help address this complexity.

Router's Queues

When processing calls, URS has a lot of objects in memory called internal queues or Router's Queues.

EWT and URS 4

Expected Wait Time (EWT) in URS - White Paper

Every time a target Selection object/function is executed, URS creates a Router’s Queue, if it was
not already created. The Router's Queue includes (refers to) every agent with the provided skills and
places the call into this queue (according to its priority).

e Every call can be in multiple Router’s Queues simultaneously (every next target Selection object can
place a call into a new Router’s Queue) and the positions of the same call in these queues are usually
different.

¢ Any single agent (especially those multi-skilled) also might be included in multiple Router’s Queues.

* EWT calculation for a call must consider that every agent that a call is waiting for, through one of the
Router’s Queues, also has other calls waiting from an arbitrary set of other Router’s Queues.

Virtual Queues

A set of Router’s Queues can be combined in bigger Virtual Queues. Every Router’'s Queue can be
included into only one Virtual Queue, which is specified in the properties of the IRD target Selection
object creating the Virtual Queue.

For URS, a Virtual Queue is a collection of one or more Router’s Queues. It is a logical queue having
calls from all involved Router’s Queues and also combining all agents from them.

The following statement on Router’s Queues in the previous section is valid for Virtual
Queues also: EWT calculation for a call must consider that every agent that a call is
waiting for, through one of the Router’s Queues, also has other calls waiting from an
arbitrary set of other Router’s Queues.

Lifetime - VQ versus Router's Queue

Router’s Queues are highly dynamic objects. They can be created/destroyed on the fly. If the
executed target Selection object requires a Router’'s Queue that URS does not have, it will be
created and will also be associated with the corresponding Virtual Queue. If a Router’'s Queue is
empty with no call in it for a specific period, the queue will be destroyed. If the queue is required
later, it will be recreated.

Virtual Queues are permanent objects in URS memory. Once created, they exist forever even if all
Router’s Queues referring to it are removed from URS memory.

EWT calculation for a call in URS can be based on either the Router’s Queues that the call is in or the
Virtual Queues that the call is in. The Router’'s Queue approach involves a lesser amount of and more
relevant calls and agents. But due to the dynamic nature of Router’s Queues in general, EWT can
provide more volatile data reflecting real time fluctuations/peaks of calls/agents.

Relying on Virtual Queues can provide more stable data, but not necessarily very precise data due to
the nature of dynamic events in a contact center. Virtual Queues often used for different business

EWT and URS 5

Expected Wait Time (EWT) in URS - White Paper

purposes are sometimes not suitable for EWT calculations. For example, Virtual Queues could include
Router’s Queues with very different sets of agents (having nothing or little in common) solving
completely different tasks.

Stat Server Data

In all of its EWT calculations, URS relies in one or another way on data provided by Stat Server. Stat
Server-supplied data used by URS ranges from raw data about agents from Router’s Queues to more
ready-to-use data about Virtual Queues. URS provides a few different variations of EWT calculation.
Each variation uses the Stat Server data differently.

The oldest and simplest method of EWT calculation is by using InVQWaitTime function, which relies
on the ExpectedWaitingTime statistic for Virtual Queues provided by Stat Server (StatLoadBalance is
used), scaling it to the current call position in some Virtual Queue.

The major point in relying on Stat Server Virtual Queue statistics is that it always requires configuring
the association of a Virtual Queue with some agent group. In cases when it is not possible (such as in
strategies that use extremely dynamic skills-based routing), this might be a serious factor in the
decision to not use Virtual Queue statistics from Stat Server.

Because of that, URS chooses to use a hybrid approach when Stat Server EWT for Virtual Queues is
required. It uses a Stat Server statistic where possible. However, in cases when it doesn’t work (Stat
Server returns a value 10000+ and also the configuration does not have any single agent group
referred to in the Virtual Queue), URS silently switches to its own method, that is, it calculates
AverageHandlingTime for all agents in the Virtual Queue multiplied by the call position in the queue.

Router's Queues - EWT Methods

In the following description, StatEWT(VQ) refers to the ExpectedWaitingTime statistic as returned by
Stat Server for Virtual Queue (VQ).

For every Router’s Queue, URS has the following information: - list of all included agents. - sorted by
priority array of calls waiting in the queue.

¢ The RvgData function (or the rvqdata web method) in the context of a call, provides the following EWT
related information (information about the rvgdata web method can also be taken directly from URS
with the /urs/help/call/rvgdata web request):

e queue len = RvgDatal[rq_id, RVQ DATA QUEUE LEN] returns the number of calls in the queue.

* pos = RvgData[rqg _id, RVQ DATA POSITION] returns the position (starting from 1 to queue_ len) of
a call in the queue.

* quit rate = RvgData[rq _id, RVQ DATA QUIT RATE] returns how quickly calls are distributed
from the queue (more exactly, it returns the average number of seconds between 2 subsequent
quits of calls from the queue). The quit rate returned here is either for the Virtual Queue associated
with the Router’s queue (if URS option wait time prediction is set to virtual) or otherwise for
Router’s queue itself. (The wait time prediction option controls which queue URS will use when it
needs the average quit time of calls from some internal routing queue. You can specify the value for
the option as internal (internal queue is used) or virtual (virtual queue associated with the
internal routing queue is used). The default value is internal. The option is specified in the URS

EWT and URS 6

Expected Wait Time (EWT) in URS - White Paper

application object and changes take effect immediately.)

Quit Rate

For every call, URS tracks the number of times and when the call entered and the call left every
Router’s Queue and every Virtual Queue.

Using these event counts:

- For every Router’s Queue, URS counts the average quitting rate (abandoned calls are not counted;
average is counted for last 10 calls that left the Router’s Queue).

- For every Virtual Queue, URS counts the average quitting rate; only calls leaving a Virtual Queue
because of routing or explicit clearing by a strategy are considered and the average is counted for
the last 32 calls that left the Virtual Queue.

- Quitting rate is expected to automatically take into account cases of multiple URS instances. The
more the URS instances, the bigger the “quitting rate” that is counted by each URS instance; calls
inside every URS will have a lesser chance to be routed when an agent becomes available, increasing
the quit rate within every involved URS.

e AHT = RvgDatal[rq_id,RVQ DATA AHT] returns the Average Handling Time of one call by agents from
this queue. Semantically, this data is the same as that mentioned in the above quit_rate, but it is
calculated very differently and is very close to how Stat Server calculates it. URS explicitly goes
through every agent from the Router’s Queue and gets the Average Handing Time for the agent (the
time the agent takes on an average to handle one call).

Agents not logged into the call’s media are ignored. If it is Workforce Management targeting a
Router’s Queue and an agent is not assigned to the required Activity, such an agent is also ignored.
Average Handling Time of all remaining agents is combined into their collective Average Handing
Time. Once calculated, the Routing Queue AHT will be reused for the next 4 seconds. The fact that
agents can be involved in other internal queues is not taken into account assuming agents handle
calls only from this Router’s Queue.

Note: For every agent and every media, URS counts how long on average the agent processes calls
of a particular media. URS tracks the time when an agent starts and stops processing every
interaction. The time difference between them is the time the agent handles interactions.

Average Agent Talking Time (ATT) is the average of the last 10 calls of the given media that the agent
handles. It is possible to override this ATT value with an explicitly provided value. The agent att URS
option can explicitly provide agents’ average talking time (ATT) values for voice. Also the

use _agent att option controls whether the agent att option will always be used or only until URS
collects enough information (10 calls processed by agent) to form its own ATT. The
UseAverageTalkingTime[time in seconds] strategy function can also set the ATT for the call’s
media. If nothing is specified and URS does not have any data, then URS uses 300 seconds as the ATT
for voice and 600 seconds for multimedia.

* ewt = RvgData[rg_id, RVvQ_DATA EWT] returns only aht*pos.
As previously mentioned, a single call can enter a few Router’s Queues with every one of them

having its own EWT. Some aggregation of multiple EWTs is required to provide a single EWT for the
entire call. As such, EWT can be used (usually minimal through all of the Router’s Queues). However,

EWT and URS 7

Expected Wait Time (EWT) in URS - White Paper

in cases when the next routing queue call placed is not an extension of but rather in addition to the
previous routing queue, another special aggregation is more appropriate. Corresponding calls to the
RvgData function return the appropriate aggregative values.

e min_ewt = RvgData[NA, RVQ DATA MIN EWT] returns the minimal EWT among all Router’'s Queues.

e agr_ewt = RvgData[NA, RVQ DATA AGR EWT] returns the aggregative (inverse to the sum of inverses)
EWT among all Router’s Queues.

e The Web API method's query returns, among other things, the EWT information for the requested call:
* rwq_ewt - RvgData[NA, RVQ DATA AGR EWT]
* min_rvq ewt - RvgData[NA, RVQ DATA MIN EWT]
* min_ewt - Minimal among all Router's Queues quit rate * pos

* max_ewt - Maximum among all Router's Queues quit rate * pos

Virtual Queue - EWT Methods

Virtual Queues are collections of Router’s Queues. As with Router’s Queues, URS counts quit rate
and AHT for Virtual Queues too. In addition to its own metrics for Virtual Queues, URS can also use
metrics provided by Stat Server. As with Router's Queues, EWT can be calculated based either on
Virtual Queue quit rate or Virtual Queue AHT.

URS counts AverageHandlingTime (AHT) for Virtual Queues in a similar manner, but in a more
complex way than for Router's queues. Specifically, URS tries to take into account the possibility of
an agent being shared by multiple Virtual Queues, and also by multiple URS instances. However, it
only works when URS has material to work with, that is, at least one Router's Queue referring to the
Virtual Queue must be processed with URS (so that URS will be able to go through the path - Virtual
Queue > Router’s Queues(s) > Agents. In other words, it is better to first place a call in a Virtual
Queue (to guarantee the existence of such a path) and then request for AHT-based EWT.

Virtual Queue Average Handling Time

* URS explicitly goes through all Router's Queues associated with a Virtual Queue and inside every one of
them, it goes through all agents.

¢ Agents not logged into the media associated with the call are ignored.
e If it is Workforce Management targeting a Router’s Queue and the agent is not assigned to the required
Activity, such an agent is also ignored.

URS calculates the Agent Average Talking Time (ATT) (how long it takes agents, on average, to handle
one interaction). See note on AHT calculation for internal Router’s Queues.

e If an agentis involved in multiple Virtual Queues, the agent’s average talking time is increased
proportionally.

e |If other URS instances also have calls in the same Virtual Queue, the agent’s average talking time again
is increased proportionally (Routers from self-awareness clusters share information about which Virtual
Queue each of them is currently working with (has call waiting in these Virtual Queues).

EWT and URS 8

Expected Wait Time (EWT) in URS - White Paper

Scaled Average Handling Time of agents is combined into their collective Average Handling Time
(inverse to the sum of inverses).

If a Virtual Queue has no associated Router's Queues, then URS instead tries to use the agent group/
skill expression presented for this Virtual Queue. For every Virtual Queue, URS remembers which
targets were used in the past for a Virtual Queue and stores one of them as presenting this Virtual
Queue. If defined, then URS will go through the agents from this presenting group and perform
similar calculations.

 If the Virtual Queue has no presenting group defined, then URS will use the unknown_aht option as a
ready-to-use value. (The unknown_aht option provides the average handling time for virtual queues
that URS will use in cases when there is not enough information to calculate the actual EWT. The
default value of this option is 9.999 secs. You can specify the option in the URS application object and
changes takes effect after a restart.

¢ Once calculated, URS will reuse the Virtual Queue AHT value for the next 10 seconds.

Once counted, the AHT of the Virtual Queue is used:

e For calculating InVQWaitTime in cases when the Virtual Queue is not configured with an agent group.

e For answering the 1vq web method (or LvgData function). The lvq web method (or LvgData function)
can also be directly obtained from URS with a urs/help/call/lvq web request.

EWT Evaluation

EWT evaluation is based on the following:

¢ aqt=stat: quit rate (time per call) is provided by Stat Server. It is calculated as ewt/ciq (both from Stat
Server). URS multiplies it by the number of calls (in its memory) and by the scale factor (to account for
multiple URS instances).

Note: Prior to v8.1.400.37, the scale factor was not used. It resulted in the final EWT value not being
scalable for the multiple URS instances case. Multiple URS instances safe variation was provided by
the InVQWaitTime function (on the assumption that all the URS instances are loaded with a similar
calls pattern).

e aqt=urs: quit rate is provided by URS. It is calculated as the average time between each
EventDiverted event from the Virtual Queue. URS multiplies it by the number of calls in its memory.
Such a quit rate is already scaled between multiple URS instances and adding more URS instances will
result in increasing this time for every separate URS instance. As a result EWT is scalable for the
multiple URS instances case (on the assumption that all the URS instances are loaded with a similar
calls pattern).

e aqt=urs2: quit rate is provided by URS. It is calculated as described above in the Virtual Queue Average
Handling Time section. URS multiplies it by the number of calls in its memory and by the scale factor
(to account for multiple URS instances).

EWT and URS 9

	EWT and URS
	Expected Wait Time (EWT) in URS - White Paper

